Applied and Computational Mathematics (ACM)

Dynamic Iteration Schemes

Dynamic iteration via source coupling

Standard time-integration methods solve transient problems all at once. This may become very inefficient or impossible for large systems of equations. Imaging that such large systems often stem from a coupled problem formulation, where different physical phenomena interact and need to be coupled in order to produce a precise mathematical model.
E.g. highly integrated electric circuits (as in memory chips or CPUs) produce heat, which effects in turn their behavior as electrical system; thus one needs to couple electric and thermal subproblem descriptions. On the one hand, this creates multiple time scales due to different physical phenomena, which demands an efficient treatment, see multirate. On the other hand, in a professional environment one usually has dedicated solvers for the subproblems, which need to be used, and an overall problem formulation is not feasible for any of the involved tools.

For those partitioned problems a dynamic iteration method becomes beneficial or even the sole way-out: it keeps the subproblems separate, solves subproblems sequentially (or in parallel) and iterates until convergence (fixed-point interation). Thus the subproblem's structure can be exploited in the respective integration.

To guarantee or to speed up convergence the time interval of interest is split into a series of windows. Then the time-integration of the windows is applied sequentially and in each window the subproblems are solved iteratively by your favoured method.

Group members working on that field

  • Andreas Bartel
  • Michael Günther

Former and ongoing Projects

Cooperation

Publications



2023

5067.

Farkas, Bálint; Jacob, Birgit; Schmitz, Merlin
On exponential splitting methods for semilinear abstract Cauchy problems
Integral Equations and Operator Theory, 95 :Paper No. 15
2023

5066.

Soroking, Mikhail; Petrov, Pavel; Budyansky, Maxim; Fayman, Pavel; Didov, Alexandr; Golov, Alexandr; Morgunov, Yuri
On the effect of horizontal refraction caused by an anticyclonic eddy in the case of long-range sound propagation in the Sea of Japan
J. Marine Sci. Eng. , 11 (9)
Juni 2023

5065.

Kraus, Konstantin; Klamroth, Kathrin; Stiglmayr, Michael
On the online path extension problem -- Location and routing problems in board games
2023

5064.

Bartel, Andreas; Günther, Michael; Jacob, Birgit; Reis, Timo
Operator splitting based dynamic iteration for linear differential-algebraic port-Hamiltonian systems
Accepted at Numerische Mathematik
2023

5063.

Bartel, Andreas; Günther, Michael; Jacob, Birgit; Reis, Timo
Operator splitting based dynamic iteration for linear differential-algebraic port-Hamiltonian systems
Numerische Mathematik, 155 (1-2) :1–34
2023
Herausgeber: Springer New York

5062.

Bartel, Andreas; Günther, Michael; Jacob, Birgit; Reis, Timo
Operator splitting based dynamic iteration for linear differential-algebraic port-Hamiltonian systems
Numerische Mathematik, 155 (1-2) :1–34
2023
Herausgeber: Springer New York

5061.

Bartel, A.; Günther, M.; Jacob, Birgit; Reis, T.
Operator splitting based dynamic iteration for linear differential-algebraic port-Hamiltonian systems
Numer. Math., 155 (1-2) :1-34
2023

5060.

Farkas, Bálint; Jacob, Birgit; Reis, Timo; Schmitz, Merlin
Operator splitting based dynamic iteration for linear infinite-dimensional port-Hamiltonian systems
2023

5059.

Frommer, Andreas; Günther, Michael; Liljegren-Sailer, Björn; Marheineke, Nicole
Operator splitting for port-Hamiltonian systems
arXiv preprint arXiv:2304.01766
2023

5058.

Frommer, Andreas; Günther, Michael; Liljegren-Sailer, Björn; Marheineke, Nicole
Operator splitting for port-Hamiltonian systems
Preprint
2023

5057.

Frommer, Andreas; Günther, Michael; Liljegren-Sailer, Björn; Marheineke, Nicole
Operator splitting for port-Hamiltonian systems
Preprint
2023

5056.

Bartel, Andreas; Diab, Malak; Frommer, Andreas; Günther, Michael
Operator splitting for semi-explicit differential-algebraic equations and port-Hamiltonian DAEs
Preprint
2023

5055.

Bartel, Andreas; Diab, Malak; Frommer, Andreas; Günther, Michael
Operator splitting for semi-explicit differential-algebraic equations and port-Hamiltonian DAEs
Preprint
2023

5054.

Doganay, Onur Tanil; Klamroth, Kathrin; Lang, Bruno; Stiglmayr, Michael; Totzeck, Claudia
Optimal control for port-Hamiltonian systems and a new perspective on dynamic network flow problems
2023

5053.

Klamroth, Kathrin; Stiglmayr, Michael; Sudhoff, Julia
Ordinal optimization through multi-objective reformulation
European Journal of Operational Research, 311 (2) :427-443
2023
ISSN: 0377-2217

5052.

Illmann, Niklas; Patroescu-Klotz, Iulia; Wiesen, Peter
Organic acid formation in the gas-phase ozonolysis of α,β-unsaturated ketones
Physical Chemistry Chemical Physics, 25 (1) :106—116
2023
ISSN: 1463-9076, 1463-9084

5051.

Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas; Anh Nguyen, Tuan
Overcoming the curse of dimensionality in the numerical approximation of backward stochastic differential equations
Journal of Numerical Mathematics, 31 (1) :1–28
2023
Herausgeber: De Gruyter

5050.

Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas; Anh Nguyen, Tuan
Overcoming the curse of dimensionality in the numerical approximation of backward stochastic differential equations
Journal of Numerical Mathematics, 31 (1) :1–28
2023
Herausgeber: De Gruyter

5049.

Alves, A. Augusto; others
Parallel processing of radio signals and detector arrays in CORSIKA 8
PoS, ICRC2023 :469
2023

5048.

Sánchez-Rodríguez, Antonio R.; Gómez-Álvarez, Elena; Méndez, José M.; Skiba, Ute M.; Jones, Davey L.; Chadwick, Dave R.; Del Campillo, María C.; Fernandes, Raphael Ba.; Kleffmann, Jörg; Barrón, Vidal
Photocatalytic fixation of NOx in soils
Chemosphere, 338 :139576
Oktober 2023
ISSN: 00456535

5047.

Heldmann, Fabian; Berkhahn, Sarah; Ehrhardt, Matthias; Klamroth, Kathrin
PINN training using biobjective optimization: The trade-off between data loss and residual loss
Journal of Computational Physics, 488 :112211
2023

5046.

Heldmann, Fabian; Ehrhardt, Matthias; Klamroth, Kathrin
PINN training using biobjective optimization: The trade-off between data loss and residual loss
Journal of Computational Physics, 488 :112211
2023
Herausgeber: Academic Press

5045.

Heldmann, Fabian; Ehrhardt, Matthias; Klamroth, Kathrin
PINN training using biobjective optimization: The trade-off between data loss and residual loss
Journal of Computational Physics, 488 :112211
2023
Herausgeber: Academic Press

5044.

Heldmann, Fabian; Ehrhardt, Matthias; Klamroth, Kathrin
PINN training using biobjective optimization: The trade-off between data loss and residual loss
arXiv preprint arXiv:2302.01810
Juni 2023

5043.

[en] Hehnen, Tristan; Arnold, Lukas
PMMA pyrolysis simulation – from micro- to real-scale
Fire Safety Journal, 141
Dezember 2023
ISSN: 03797112