Applied and Computational Mathematics (ACM)

Semiconductor

Semiconductor devices are solid state bodies, whose electrical conductivity strongly depends on the temperature and other internal properties like the so-called doping. Depending on the temperature or other internal settigns, they can be regarded as insulator or conductor. (Physically speaken: Semiconductor materials have a band gap between.. and .. electron Volt)
This property makes them extremely useful in electronics, since this property can be easily employed to use them as switches. On nowadays computerchips and prozessors, millions of semiconductor devices (especially transistors) are included in an electronic circuit. In order to use common circuit simulation tools to simualte circuits containing those devices, semiconductor devices are often reflected by compact models - subcircuits of basic elements like resistors, capacitors, inductors and current/voltage sources. Those compact models shoul rebuild the input/output behaviour of the semiconductor device.

Ongoing miniaturization and the step from miro- to nanotechnology, however, leads to more powerful prozessors and chips, since higher packing density can be achieved. On the other hand, this higher packing density and miniaturization of the devices makes parasitic effects like heating predominant. Incorporation of those effects into compact models results in large compact models to describe a single semiconductor device. This makes it desireable to include more exact distributed device models - device models based on partial differential equations - into circuit simulation.

Moreover, smaller devices are driven by smaller signals, what makes them more energy efficient. On the other hand this results in a larger noise/signal ratio, what makes inclusion of non-deterministic effects into device models interesting. All in all, this leads to the following recent question in semiconductor/circuit modelling and simulation:

Former and ongoing projects

Cooperations

Open subjects for theses

  • Master Thesis: Two-dimensional thermal-electric simulation of semiconductor MOSFET-devices (M.Brunk)

Publications



2022

6124.

[german] Kremer, Richard; Bohrmann-Linde, Claudia; Tausch, Michael W.
Künstliche Photosynthese im Fokus - Photokatalytische Wasserstofferzeugung in der Eintopfzelle
CHEMKON, 29 (6) :646-653
September 2022

6123.

[german] Bohrmann-Linde, Claudia; Gökkus, Yasemin; Humbert, Ludger; Kiesling, Elisabeth; Kremer, Richard; Losch, Daniel; Schmitz, Denise; Zeller, Diana
Analyse, Struktur und Darstellung chemiedidaktischer Elemente aus informatischer Perspektive – Entwicklung eines interdisziplinären Lehrkonzeptes
MNU-Journal, 05.2022 :423-429
September 2022

6122.

Bohrmann-Linde, Claudia; Siehr, Ilona
CHEMIE Einführungsphase Nordrhein-Westfalen
Herausgeber: C.C.Buchner Verlag, Bamberg
August 2022

ISBN: 9783661060019

6121.

[german] Monique, Meier; Zeller, Diana; Stinken-Rösner, Lisa
Interaktive Videoformate für den naturwissenschaftlichen Unterricht. Vom Rezipieren zum Interagieren
Unterricht Biologie, 475 :44-47
07 2022

6120.

[german] Grandrath, Rebecca; Bohrmann-Linde, Claudia
Strom aus Bäckerhefe
Nachrichten aus der Chemie, 70 (7-8) :18-21
Juli 2022

6119.

[german] Grandrath, Rebecca; Bohrmann-Linde, Claudia
Entwicklung eines lowcost Experiments für den Chemieunterricht am Beispiel der enzymatischen Brennstoffzelle mit Lactase
CHEMKON, 29 (S1) :233-238
Juni 2022

6118.

[german] Zeller, Diana
Medialab – ein dreistufiges Modul zur Entwicklung digitalisierungsbezogener Kompetenzen im Studium des Chemie‐ und Sachunterrichtslehramts
CHEMKON, 29 (S1) :287-292
Juni 2022

6117.

[english] Bohrmann-Linde, Claudia; Zeller, Diana; Meuter, Nico; Tausch, Michael W.
Teaching Photochemistry: Experimental Approaches and Digital Media
ChemPhotoChem, 6 (6) :1-11
Juni 2022

6116.

[german] Kiesling, Elisabeth; Venzlaff, Julian; Bohrmann-Linde, Claudia
BNE im Chemieunterricht – von der Leitlinie BNE NRW zur exemplarischen Unterrichtseinbindung
CHEMKON, 29 (S1) :239-245
Juni 2022

6115.

[german] Zeller, Diana; Meier, Monique
Videos interaktiv erweitern - Forschendes Lernen vielseitig unterstützen
Digital Unterricht Biologie, 4 :10-11
Mai 2022

6114.

[german] Gökkus, Yasemin; Tausch, Michael W.
Explorative Studie zur partizipativen und nutzenorientierten Forschung in der Chemiedidaktik
CHEMKON, 29 (3) :117-124
April 2022

6113.

[german] Banerji, Amitabh; Dörschelln, Jennifer; Schwarz, D.
Organische Leuchtdioden im Chemieunterricht
Chemie in unserer Zeit, 52 (1) :34-41
2022

6112.

Gerlach, Moritz; Glück, Jochen
On characteristics of the range of integral operators
2022

6111.

Petrov, {Pavel S.}; Ehrhardt, Matthias; Trofimov, {M. Yu.}
On the decomposition of the fundamental solution of the {Helmholtz} equation via solutions of iterative parabolic equations
Asymptotic Analysis, 126 (3-4) :215--228
2022
Herausgeber: IOS Press

6110.

Ballaschk, Frederic; Kirsch, Stefan F.
Oxidations with Iodine(V) Compounds – From Stoichiometric Compounds to Catalysts
In Ishihara, Kazuaki and Muñiz, Kilian, Editor, Iodine Catalysis in Organic Synthesis
Seite 299–334
Herausgeber: Wiley
1 Edition
2022
299–334

6109.

Heldmann, F.; Treibert, S.; Ehrhardt, M.; Klamroth, K.
PINN Training using Biobjective Optimization: The Trade-off between Data Loss and Residual Loss
IMACM preprint 22/13
2022

6108.

Jacob, Birgit; Morris, Kirsten
On solvability of dissipative partial differential-algebraic equations
IEEE Control. Syst. Lett., 6 :3188-3193
2022

6107.

Farkas, Bálint; Nagy, Béla; Révész, Szilárd Gy.
On intertwining of maxima of sum of translates functions with nonsingular kernels
Trudy Inst. Mat. Mekh. UrO RAN
2022

6106.

Farkas, Bálint; Jacob, Birgit; Schmitz, Merlin
On exponential splitting methods for semilinear abstract Cauchy problems
2022

6105.

Güttel, Stefan; Schweitzer, Marcel
Randomized sketching for Krylov approximations of large-scale matrix functions
2022

6104.

Klamroth, Kathrin; Stiglmayr, Michael; Sudhoff, Julia
Ordinal Optimization Through Multi-objective Reformulation
math.OC, arXiv:2204.02003
2022
Herausgeber: arXiv

6103.

Kapllani, Lorenc; Teng, Long
Multistep schemes for solving backward stochastic differential equations on {GPU}
JMI, 12 (5)
2022

6102.

Fatoorehchi, Hooman; Ehrhardt, Matthias
Numerical and semi-nume\-rical solutions of a modified Thévenin model for calculating terminal voltage of battery cells
J. Energy Storage, 45 :103746
2022
Herausgeber: Elsevier

6101.

Bartel, Andreas; Günther, Michael
Multirate Schemes -- An Answer of Numerical Analysis to a Demand from Applications
In Michael Günther and Wil Schilders, Editor, Novel Mathematics Inspired by Industrial Challenges
Seite 5--27
Herausgeber: Springer
2022
5--27

6100.

Klamroth, Kathrin; Stiglmayr, Michael; Sudhoff, Julia
Multi-objective Matroid Optimization with Ordinal Weights
Discrete Applied Mathematics
2022

Weitere Infos über #UniWuppertal: