Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



scheduled 2023

6180.

Ehrhardt, M.; Günther, M.
Numerik gewöhnlicher Differentialgleichungen : Anwendungen in Technik, Wirtschaft, Biologie und Gesellschaft
Herausgeber: Springer
scheduled 2023

6179.

Ehrhardt, M.; Günther, M.
Numerik gewöhnlicher Differentialgleichungen : Anwendungen in Technik, Wirtschaft, Biologie und Gesellschaft
Herausgeber: Springer

6178.

Teng, L.; Ehrhardt, M.; Günther, M.
Stochastic Correlation: Modelling, Analysis and Numerical Simulation with Applications in Finance
Herausgeber: World Scientific

6177.

Teng, Long; Ehrhardt, Matthias; G\"unther, Michael
Stochastic Correlation: Modelling, Analysis and Numerical Simulation with Applications in Finance
Herausgeber: World Scientific
scheduled 2023

6176.

{Duffy, D.; Kienitz, J.}
Monte Carlo Frameworks - Building Customisable and High-performance C++ Applications
Herausgeber: {John Wiley \& Sons, Chichester}

6175.

{Kienitz, J.}
Stochastic Processes in Finance I
{Wilmott Magazine}

6174.

{Kienitz, J.}
Stochastic Processes in Finance II
{Wilmott Magazine}, {6}

6173.

{Kienitz, J.}
Stochastic Processes in Finance III
{Wilmott Magazine}
{2009}

6172.

{Beyer, P.; Kienitz, J.}
{Pricing {F}orward {S}tart {O}ption in {M}odels based on {L}évy {P}rocesses}
{The Icfai University Journal of Derivatives Markets}, {6(2)} :{7--23}
{2009}

6171.

{Kienitz, J.}
{The {CGMY} model}
{The Encyclopedia of Quantitative Finance (ed. Cont), Wiley}
{2009}

6170.

Ehrhardt, M.; Günther, M.
Numerik gewöhnlicher Differentialgleichungen : Anwendungen in Technik, Wirtschaft, Biologie und Gesellschaft
Herausgeber: Springer

6169.

Ehrhardt, M.; Günther, M.
Numerik gewöhnlicher Differentialgleichungen : Anwendungen in Technik, Wirtschaft, Biologie und Gesellschaft
Herausgeber: Springer

6168.

Ehrhardt, M.; Günther, M.
Numerik gewöhnlicher Differentialgleichungen : Anwendungen in Technik, Wirtschaft, Biologie und Gesellschaft
Herausgeber: Springer

6167.

Ehrhardt, M.; Günther, M.
Numerik gewöhnlicher Differentialgleichungen : Anwendungen in Technik, Wirtschaft, Biologie und Gesellschaft
Herausgeber: Springer
2023

6166.

Jacob, Birgit; Totzeck, Claudia
Port-Hamiltonian structure of interacting particle systems and its mean-field limit
2023

6165.

Bauß, Julius; Stiglmayr, Michael
Augmenting Biobjective Branch \& Bound with Scalarization-Based Information
Submitted to Mathematical Methods of Operations Research
2023
Herausgeber: arXiv

6164.

Carrillo, Jose Antonio; Totzeck, Claudia; Vaes, Urbain
Consensus-based Optimization and Ensemble Kalman Inversion for Global Optimization Problems with Constraints
, Modeling and Simulation for Collective Dynamics,Lecture Notes Series, Institute for Mathematical Sciences, NUS Band 40
2023

6163.

[german] Cornelius, Soraya; Bohrmann-Linde, Claudia
Kompetenzförderung durch Erklärvideos in einem Selbstlernbuch zum Einstieg in die Organische Chemie
MNU-Journal, 01.2023 :48-54
2023
ISSN: 0025-5866

6162.

Teng, L.; Ehrhardt, M.; Günther, M.
Stochastic Correlation: Modelling, Analysis and Numerical Simulation with Applications in Finance
Herausgeber: World Scientific

6161.

[german] Grandrath, Rebecca; Bohrmann-Linde, Claudia
Mit Lactase und Lactose zum elektrischen Strom - enzymatische Brennstoffzellen auf Filterpapierbasis für den Chemieunterricht.
CHEMKON, 30 (1) :37-41
Januar 2023

6160.

Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Structure-preserving identification of port-Hamiltonian systems - a sensitivity-based approach
2023

6159.

[english] Rendon-Enriquez, Ibeth; Palma-Cando, Alex; Körber, Florian; Niebisch, Felix; Forster, Michael; Tausch, Michael W.; Scherf, Ullrich
Thin Polymer Films by Oxidative or Reductive Electropolymerization and Their Application in Electrochromic Windows and Thin-Film Sensors
molecules, 28 (2) :883
Januar 2023

6158.

Teng, L.; Ehrhardt, M.; Günther, M.
Stochastic Correlation: Modelling, Analysis and Numerical Simulation with Applications in Finance
Herausgeber: World Scientific

6157.

Teng, L.; Ehrhardt, M.; Günther, M.
Stochastic Correlation: Modelling, Analysis and Numerical Simulation with Applications in Finance
Herausgeber: World Scientific

6156.

Teng, L.; Ehrhardt, M.; Günther, M.
Stochastic Correlation: Modelling, Analysis and Numerical Simulation with Applications in Finance
Herausgeber: World Scientific

Weitere Infos über #UniWuppertal: