Applied and Computational Mathematics (ACM)

Dynamic Iteration Schemes

Dynamic iteration via source coupling

Standard time-integration methods solve transient problems all at once. This may become very inefficient or impossible for large systems of equations. Imaging that such large systems often stem from a coupled problem formulation, where different physical phenomena interact and need to be coupled in order to produce a precise mathematical model.
E.g. highly integrated electric circuits (as in memory chips or CPUs) produce heat, which effects in turn their behavior as electrical system; thus one needs to couple electric and thermal subproblem descriptions. On the one hand, this creates multiple time scales due to different physical phenomena, which demands an efficient treatment, see multirate. On the other hand, in a professional environment one usually has dedicated solvers for the subproblems, which need to be used, and an overall problem formulation is not feasible for any of the involved tools.

For those partitioned problems a dynamic iteration method becomes beneficial or even the sole way-out: it keeps the subproblems separate, solves subproblems sequentially (or in parallel) and iterates until convergence (fixed-point interation). Thus the subproblem's structure can be exploited in the respective integration.

To guarantee or to speed up convergence the time interval of interest is split into a series of windows. Then the time-integration of the windows is applied sequentially and in each window the subproblems are solved iteratively by your favoured method.

Group members working on that field

  • Andreas Bartel
  • Michael Günther

Former and ongoing Projects

Cooperation

Publications



2023

5012.

Beck, Christian; Jentzen, Arnulf; Kleinberg, Konrad; Kruse, Thomas
Nonlinear Monte Carlo methods with polynomial runtime for Bellman equations of discrete time high-dimensional stochastic optimal control problems
2023

5011.

Müller, Mats; Kemper, Svenja; Schlenkhoff, Andreas
Numerical modelling of the hydraulic capacity of grates inlets (OpenFOAM)
E-proceedings of the 40th IAHR World Congress in 2023 in Vienna, Austria.
2023

5010.

Ehrhardt, Matthias; Kozitskiy, Sergey B
On a generalization of the split-step Padé method to the case of unknown vector-functions
Preprint IMACM
2023
Herausgeber: Bergische Universität Wuppertal

5009.

Ehrhardt, Matthias; Kozitskiy, Sergey B
On a generalization of the split-step Padé method to the case of unknown vector-functions
Preprint IMACM
2023
Herausgeber: Bergische Universität Wuppertal

5008.

Farkas, Bálint; Jacob, Birgit; Schmitz, Merlin
On exponential splitting methods for semilinear abstract Cauchy problems
Integral Equations and Operator Theory, 95 :Paper No. 15
2023

5007.

Soroking, Mikhail; Petrov, Pavel; Budyansky, Maxim; Fayman, Pavel; Didov, Alexandr; Golov, Alexandr; Morgunov, Yuri
On the effect of horizontal refraction caused by an anticyclonic eddy in the case of long-range sound propagation in the Sea of Japan
J. Marine Sci. Eng. , 11 (9)
Juni 2023

5006.

Kraus, Konstantin; Klamroth, Kathrin; Stiglmayr, Michael
On the online path extension problem -- Location and routing problems in board games
2023

5005.

Bartel, Andreas; Günther, Michael; Jacob, Birgit; Reis, Timo
Operator splitting based dynamic iteration for linear differential-algebraic port-Hamiltonian systems
Accepted at Numerische Mathematik
2023

5004.

Bartel, Andreas; Günther, Michael; Jacob, Birgit; Reis, Timo
Operator splitting based dynamic iteration for linear differential-algebraic port-Hamiltonian systems
Numerische Mathematik, 155 (1-2) :1–34
2023
Herausgeber: Springer New York

5003.

Bartel, Andreas; Günther, Michael; Jacob, Birgit; Reis, Timo
Operator splitting based dynamic iteration for linear differential-algebraic port-Hamiltonian systems
Numerische Mathematik, 155 (1-2) :1–34
2023
Herausgeber: Springer New York

5002.

Farkas, Bálint; Jacob, Birgit; Reis, Timo; Schmitz, Merlin
Operator splitting based dynamic iteration for linear infinite-dimensional port-Hamiltonian systems
2023

5001.

Tyshchenko, Andrey; Kozitskiy, Sergey; Kazak, Mikhail; Petrov, Pavel
Modern methods of sound propagation modelling based on the expansion of acoustic fields over normal modes
Acoustical Physics (accepted, to appear in 2023), 69 (5)
Juni 2023

5000.

Frommer, Andreas; Günther, Michael; Liljegren-Sailer, Björn; Marheineke, Nicole
Operator splitting for port-Hamiltonian systems
arXiv preprint arXiv:2304.01766
2023

4999.

Frommer, Andreas; Günther, Michael; Liljegren-Sailer, Björn; Marheineke, Nicole
Operator splitting for port-Hamiltonian systems
Preprint
2023

4998.

Frommer, Andreas; Günther, Michael; Liljegren-Sailer, Björn; Marheineke, Nicole
Operator splitting for port-Hamiltonian systems
Preprint
2023

4997.

Bartel, Andreas; Diab, Malak; Frommer, Andreas; Günther, Michael
Operator splitting for semi-explicit differential-algebraic equations and port-Hamiltonian DAEs
Preprint
2023

4996.

Bartel, Andreas; Diab, Malak; Frommer, Andreas; Günther, Michael
Operator splitting for semi-explicit differential-algebraic equations and port-Hamiltonian DAEs
Preprint
2023

4995.

Doganay, Onur Tanil; Klamroth, Kathrin; Lang, Bruno; Stiglmayr, Michael; Totzeck, Claudia
Optimal control for port-Hamiltonian systems and a new perspective on dynamic network flow problems
2023

4994.

Klamroth, Kathrin; Stiglmayr, Michael; Sudhoff, Julia
Ordinal optimization through multi-objective reformulation
European Journal of Operational Research, 311 (2) :427-443
2023
ISSN: 0377-2217

4993.

Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas; Anh Nguyen, Tuan
Overcoming the curse of dimensionality in the numerical approximation of backward stochastic differential equations
Journal of Numerical Mathematics, 31 (1) :1–28
2023
Herausgeber: De Gruyter

4992.

Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas; Anh Nguyen, Tuan
Overcoming the curse of dimensionality in the numerical approximation of backward stochastic differential equations
Journal of Numerical Mathematics, 31 (1) :1–28
2023
Herausgeber: De Gruyter

4991.

Alves, A. Augusto; others
Parallel processing of radio signals and detector arrays in CORSIKA 8
PoS, ICRC2023 :469
2023

4990.

Heldmann, Fabian; Ehrhardt, Matthias; Klamroth, Kathrin
PINN training using biobjective optimization: The trade-off between data loss and residual loss
Journal of Computational Physics, 488 :112211
2023

4989.

Heldmann, Fabian; Ehrhardt, Matthias; Klamroth, Kathrin
PINN training using biobjective optimization: The trade-off between data loss and residual loss
Journal of Computational Physics, 488 :112211
2023
Herausgeber: Academic Press

4988.

Heldmann, Fabian; Ehrhardt, Matthias; Klamroth, Kathrin
PINN training using biobjective optimization: The trade-off between data loss and residual loss
Journal of Computational Physics, 488 :112211
2023
Herausgeber: Academic Press

Weitere Infos über #UniWuppertal: