Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



2024

5332.

Rath, Wolfgang H.; Göstl, Robert; Herrmann, Andreas
Mechanochemical Activation of DNAzyme by Ultrasound
Advanced Science, 11 (8) :2306236
Februar 2024
ISSN: 2198-3844

5331.


Formal synthesis of bastimolide A using a chiral Horner-Wittig reagent and a bifunctional aldehyde as key building blocks
Tetrahedron Chem, 9
Februar 2024
Herausgeber: Elsevier
ISSN: 2666-951X

5330.


Oxidation of Alcohols in Continuous Flow with a SolidPhase Hypervalent Iodine Catalyst
Chemistry - A European Journal, 2024 :e202304011
Februar 2024
Herausgeber: Wiley
ISSN: 0947-6539

5329.

[german] Tausch, Michael W.; Schneidewind, Jacob
Mit Licht zu grünem Wasserstoff
Chemie in unserer Zeit, 58 (1)
Februar 2024

5328.

Izak-Nau, Emilia; Niggemann, Louisa P.; Göstl, Robert
Brownian Relaxation Shakes and Breaks Magnetic Iron Oxide-Polymer Nanocomposites to Release Cargo
Small, 20 (4) :2304527
Januar 2024
ISSN: 1613-6829

5327.

[english] Wiebel, Michelle; Bensberg, Kathrin; Wende, Luca; Grandrath, Rebecca; Plitzko, Kathrin; Bohrmann-Linde, Claudia; Schebb, Nils Helge
Efficient and simple extraction protocol for triterpenic acids from apples
Journal of Chemical Education
April 2024
Herausgeber: American Chemical Society and Division of Chemical Education, Inc.

5326.

Krhac, Kaja; Maschke, Bernhard; van der Schaft, Arjan
Port-Hamiltonian systems with energy and power ports
IFAC-PapersOnLine, 58(6) :280-285
Mai 2024

5325.

Kapllani, Lorenc; Teng, Long
{A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations}
2024

5324.

Ehrhardt, Matthias; Kozitskiy, Sergey B
A generalization of the split-step Padé method to the case of coupled acoustic modes equation in a 3D waveguide
Journal of Sound and Vibration :118304
2024
Herausgeber: Elsevier

5323.

Petrov, Pavel S.; Ehrhardt, Matthias; Kozitskiy, Sergey B.
A generalization of the split-step Padé method to the case of coupled acoustic modes equation in a 3D waveguide
Journal of Sound and Vibration, 577 :118304
2024
Herausgeber: Academic Press

5322.

Petrov, Pavel S.; Ehrhardt, Matthias; Kozitskiy, Sergey B.
A generalization of the split-step Padé method to the case of coupled acoustic modes equation in a 3D waveguide
Journal of Sound and Vibration, 577 :118304
2024
Herausgeber: Academic Press

5321.

Clevenhaus, Anna; Totzeck, Claudia; Ehrhardt, Matthias
A gradient-based calibration method for the Heston model
International Journal of Computer Mathematics, 101 (9-10) :1094–1112
2024
Herausgeber: Taylor & Francis

5320.

Clevenhaus, Anna; Totzeck, Claudia; Ehrhardt, Matthias
A gradient-based calibration method for the Heston model
International Journal of Computer Mathematics, 101 (9-10) :1094–1112
2024
Herausgeber: Taylor & Francis

5319.

Clevenhaus, Anna; Totzeck, Claudia; Ehrhardt, Matthias
A gradient-based calibration method for the Heston model
International Journal of Computer Mathematics
2024

5318.

Schäfers, Kevin; Peardon, Michael; Günther, Michael
A modified Cayley transform for SU (3)
Preprint
2024

5317.

Schäfers, Kevin; Peardon, Michael; Günther, Michael
A modified Cayley transform for SU (3)
Preprint
2024

5316.

Schaefers, Kevin; Peardon, Michael
A modified Cayley transform for SU(3)
2024

5315.

Carslaw, Nicola; Bekö, Gabriel; Langer, Sarka; Schoemaecker, Coralie; Mihucz, Victor G.; Dudzinska, Marzenna; Wiesen, Peter; Nehr, Sascha; Huttunen, Kati; Querol, Xavier; Shaw, David
A new framework for indoor air chemistry measurements: Towards a better understanding of indoor air pollution
Indoor Environments, 1 (1) :100001
März 2024
ISSN: 29503620

5314.

Ehrhardt, Matthias
A nonstandard finite difference scheme for a time-fractional model of Zika virus transmission
Mathematical Biosciences and Engineering, 21 (1) :924–962
2024
Herausgeber: AIMS Press

5313.

Ehrhardt, Matthias
A nonstandard finite difference scheme for a time-fractional model of Zika virus transmission
Mathematical Biosciences and Engineering, 21 (1) :924–962
2024
Herausgeber: AIMS Press

5312.

Hölz, Julian
A Note on the Uniform Ergodicity of Dynamical Systems.
2024

5311.

Clevenhaus, Anna; Totzeck, Claudia; Ehrhardt, Matthias
A numerical study of the impact of variance boundary conditions for the Heston model
In Burnecki, K. and Szwabiński, J. and Teuerle, M., Editor
Springer
In Burnecki, K. and Szwabiński, J. and Teuerle, M., Editor
Herausgeber: Bergische Universität Wuppertal
2024

5310.

Clevenhaus, Anna; Totzeck, Claudia; Ehrhardt, Matthias
A numerical study of the impact of variance boundary conditions for the Heston model
In Burnecki, K. and Szwabiński, J. and Teuerle, M., Editor
Springer
In Burnecki, K. and Szwabiński, J. and Teuerle, M., Editor
Herausgeber: Bergische Universität Wuppertal
2024

5309.

Clemens, Markus; Henkel, Marvin-Lucas; Kasolis, Fotios; Günther, Michael
A Port-Hamiltonian System Perspective on Electromagneto-Quasistatic Field Formulations of Darwin-Type
Preprint
2024

5308.

Clemens, Markus; Henkel, Marvin-Lucas; Kasolis, Fotios; Günther, Michael
A Port-Hamiltonian System Perspective on Electromagneto-Quasistatic Field Formulations of Darwin-Type
Preprint
2024