Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



2024

5239.

Ackermann, Julia; Kruse, Thomas; Urusov, Mikhail
Reducing Obizhaeva-Wang-type trade execution problems to LQ stochastic control problems
Finance and Stochastics, 28 (3) :813–863
2024
Herausgeber: Springer Verlag

5238.

Ackermann, Julia; Kruse, Thomas; Urusov, Mikhail
Reducing Obizhaeva-Wang-type trade execution problems to LQ stochastic control problems
Finance and Stochastics, 28 (3) :813–863
2024
Herausgeber: Springer Verlag

5237.

Saini, B. S.; Miettinen, K.; Klamroth, K.; Steuer, R. E.; Dächert, K.
SCORE Band Visualizations: Supporting Decision Makers in Comparing High-Dimensional Outcome Vectors in Multiobjective Optimization
IEEE Access, 12 :164371—164388
2024

5236.

Ackermann, Julia; Kruse, Thomas; Urusov, Mikhail
Self-exciting price impact via negative resilience in stochastic order books
Annals of Operations Research, 336 (1) :637–659
2024
Herausgeber: Springer Netherlands

5235.

Ackermann, Julia; Kruse, Thomas; Urusov, Mikhail
Self-exciting price impact via negative resilience in stochastic order books
Annals of Operations Research, 336 (1) :637–659
2024
Herausgeber: Springer Netherlands

5234.

Andersen, Kim Allan; Boomsma, Trine Krogh; Efkes, Britta; Forget, Nicolas
Sensitivity Analysis of the Cost Coefficients in Multiobjective Integer Linear Optimization
Management Science
2024

5233.

[english] Grandrath, Rebecca; Bohrmann-Linde, Claudia
Simple biofuel cells: the superpower of baker’s yeast
Science in School - The European journal for science teachers, 66
Februar 2024

5232.

Wissdorf, Walter; Thinius, Marco; Benter, Thorsten
Simulation of Space Charge Effects in Fourier Transform Quadrupole Ion Traps (FT-QITs)
Journal of the American Society for Mass Spectrometry, 35 (12) :2969—2983
Dezember 2024
ISSN: 1044-0305, 1879-1123

5231.

Palitta, Davide; Schweitzer, Marcel; Simoncini, Valeria
Sketched and truncated polynomial Krylov subspace methods: Matrix Sylvester equations
Math. Comp.
2024

5230.

Liu, Qian
Small-signal synchronization stability of sequence-decomposed grid-forming IBRs
Dezember 2024

5229.

Antunes, Carlos Henggeler; Fonseca, Carlos M.; Paquete, Luís; Stiglmayr, Michael
Special issue on exact and approximation methods for mixed-integer multi-objective optimization
Mathematical Methods of Operations Research
August 2024
Herausgeber: Springer Science and Business Media LLC
ISSN: 1432-5217

5228.

Hastir, Anthony; Jacob, Birgit; Zwart, Hans
Spectral analysis of a class of linear hyperbolic partial differential equations
IEEE Control Systems Letters, 8 :766-771
2024

5227.

Bartel, Andreas; Diab, Malak; Frommer, Andreas; Günther, Michael; Marheineke, Nicole
Splitting Techniques for DAEs with port-Hamiltonian Applications
Preprint
2024

5226.

Bartel, Andreas; Diab, Malak; Frommer, Andreas; Günther, Michael; Marheineke, Nicole
Splitting Techniques for DAEs with port-Hamiltonian Applications
Preprint
2024

5225.

Bartel, A.; Diab, M.; Frommer, A.; G\"unther ; Marheineke, N.
Splitting Techniques for DAEs with port-Hamiltonian Applications
2024

5224.


Sprachsensibler Chemieunterricht digital umgesetzt - Ein Seminarexkurs im Rahmen des Praxissemesters
2024

5223.

Ackermann, Julia; Ehrhardt, Matthias; Kruse, Thomas; Tordeux, Antoine
Stabilisation of stochastic single-file dynamics using port-Hamiltonian systems
arXiv preprint arXiv:2401.17954
2024

5222.

Ackermann, Julia; Ehrhardt, Matthias; Kruse, Thomas; Tordeux, Antoine
Stabilisation of stochastic single-file dynamics using port-Hamiltonian systems
Preprint
2024

5221.

Ackermann, Julia; Ehrhardt, Matthias; Kruse, Thomas; Tordeux, Antoine
Stabilisation of stochastic single-file dynamics using port-Hamiltonian systems
Preprint
2024

5220.

Ackermann, Julia; Ehrhardt, Matthias; Kruse, Thomas; Tordeux, Antoine
Stabilisation of stochastic single-file dynamics using port-Hamiltonian systems
Preprint
2024

5219.

Jacob, Birgit; Glück, Jochen; Meyer, Annika; Wyss, Christian; Zwart, Hans
Stability via closure relations with applications to dissipative and port-Hamiltonian systems
J. Evol. Equ., 24 :Paper No. 62
2024

5218.

Clemens, Markus; Henkel, Marvin-Lucas; Kasolis, Fotios; Günther, Michael
Structural Aspects of Electromagneto-Quasistatic Field Formulations of Darwin-Type Derived in the Port-Hamiltonian System Framework
TechRxiv
2024
Herausgeber: IEEE

5217.

Clemens, Markus; Henkel, Marvin-Lucas; Kasolis, Fotios; Günther, Michael
Structural Aspects of Electromagneto-Quasistatic Field Formulations of Darwin-Type Derived in the Port-Hamiltonian System Framework
TechRxiv
2024
Herausgeber: IEEE

5216.

Günther, M.; Jacob, Birgit; Totzeck, Claudia
Structure-preserving identification of port-Hamiltonian systems - a sensitivity-based approach
Band 43
Herausgeber: Springer, Cham.
van Beurden, M., Budko, N.V., Ciuprina, G., Schilders, W., Bansal, H., Barbulescu, R. Edition
2024

5215.

Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Structure-Preserving Identification of Port-Hamiltonian Systems—A Sensitivity-Based Approach
In van Beurden, Martijn and Budko, Neil V. and Ciuprina, Gabriela and Schilders, Wil and Bansal, Harshit and Barbulescu, Ruxandra, Editor, Scientific Computing in Electrical Engineering SCEE 2022, Amsterdam, The Netherlands, July 2022ausMathematics in Industry, Seite 167–174
In van Beurden, Martijn and Budko, Neil V. and Ciuprina, Gabriela and Schilders, Wil and Bansal, Harshit and Barbulescu, Ruxandra, Editor
Herausgeber: Springer Cham
2024