Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.
In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.
An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.
Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.
In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.
Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.
Special Interests
Publications
- 2024
5264.
Hosfeld, René; Jacob, Birgit; Schwenninger, Felix; Tucsnak, Marius
Input-to-state stability for bilinear feedback systems
SIAM Journal on Control and Optimization, 62 (3) :1369-1389
20245263.
Jamil, Hamza
Intrusive and non-intrusive uncertainty quantification methodologies for pyrolysis modeling
Fire Safety Journal, 143 :104060
2024
ISSN: 0379-71125262.
Botchev, M. A.; Knizhnerman, L. A.; Schweitzer, M.
Krylov subspace residual and restarting for certain second order differential equations
SIAM J. Sci. Comput., 46 (2) :S223-S253
20245261.
Hastir, Anthony; Jacob, Birgit; Zwart, Hans
Linear-Quadratic optimal control for boundary controlled networks of waves
20245260.
Xu, Zhuo; Tucsnak, Marius
LQR control for a system describing the interaction between a floating solid and the surrounding fluid
Mathematical Control and Related Fields, 14(4) :1477-1500
Dezember 20245259.
Costa, G Morais Rodrigues; Ehrhardt, Matthias
Mathematical analysis and a nonstandard scheme for a model of the immune response against COVID-19
Band 793
Seite 251–270
Herausgeber: AMS Contemporary Mathematics
2024
251–2705258.
Costa, G Morais Rodrigues; Ehrhardt, Matthias
Mathematical analysis and a nonstandard scheme for a model of the immune response against COVID-19
Band 793
Seite 251–270
Herausgeber: AMS Contemporary Mathematics
2024
251–2705257.
Bolten, Matthias; Kilmer, Misha E.; MacLachlan, Scott
Multigrid preconditioning for regularized least-squares problems
SIAM J. Sci. Comput., 46 (5) :s271—s295
2024
ISSN: 1064-82755256.
Schultes, Johanna
Multiobjective optimization of shapes using scalarization techniques
Dissertation
Dissertation
Bergische Universität Wuppertal
20245255.
Allmendinger, Richard; Fonseca, Carlos M.; Sayin, Serpil; Wiecek, Margaret M.; Stiglmayr, Michael
Multiobjective Optimization on a Budget (Dagstuhl Seminar 23361)
2024
Herausgeber: Schloss Dagstuhl – Leibniz-Zentrum für Informatik5254.
Bolten, M.; Doganay, O. T.; Gottschalk, H.; Klamroth, K.
Non-convex shape optimization by dissipative Hamiltonian flows
Eng. Optim. :1—20
20245253.
Heintz, Chris; Schnödewind, Lisa; Braubach, Oliver; Kersten, Hendrik; Benter, Thorsten; Wissdorf, Walter
Observation of Large, Charged Droplet Signatures within the High-Vacuum Region of a Commercial Electrospray TOF-MS
Journal of the American Society for Mass Spectrometry, 35 (3) :508—517
März 2024
ISSN: 1044-0305, 1879-11235252.
Bauß, Julius
On improvements of multi-objective branch and bound
Dissertation
Dissertation
Bergische Universität Wuppertal
20245251.
Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
On some Cauchy problems and positive linear operators
Mediterranean Journal of Mathematics, accepted
20245250.
Lorenz, Jan; Zwerschke, Tom; Schaefers, Kevin
Operator splitting for coupled linear port-Hamiltonian systems
20245249.
Kruse, Thomas; Strack, Philipp
Optimal dynamic control of an epidemic
Operations Research, 72 (3) :1031–1048
2024
Herausgeber: INFORMS5248.
Kruse, Thomas; Strack, Philipp
Optimal dynamic control of an epidemic
Operations Research, 72 (3) :1031–1048
2024
Herausgeber: INFORMS5247.
Vinod, Vivin; Kleinekathöfer, Ulrich; Zaspel, Peter
Optimized multifidelity machine learning for quantum chemistry
Mach. Learn.: Sci. Technol., 5 (1) :015054
20245246.
Bräkling, Steffen; Vetter, Marleen; Kurtenbach, Ralf; Wiesen, Peter; Campbell, Scott J.; Moncur, John H.; Klee, Sonja
Performance Evaluation of an EI&CI Dual Ionization TOFMS Hyphenated with a Flow Modulated GC×GC System
Journal of the American Society for Mass Spectrometry, 35 (11) :2670—2679
November 2024
ISSN: 1044-0305, 1879-11235245.
Frommer, Andreas; Ramirez-Hidalgo, Gustavo; Schweitzer, Marcel; Tsolakis, Manuel
Polynomial preconditioning for the action of the matrix square root and inverse square root
Electron. Trans. Numer. Anal., 60 :381-404
20245244.
Jacob, B.; Totzeck, Claudia
Port-Hamiltonian Structure of Interacting Particle Systems and Its Mean-Field Limit
SIAM Multiscale Modelling & Simulation, 22
20245243.
Bartel, A.; Clemens, M.; Günther, M.; Jacob, Birgit; Reis, T.
Port-Hamiltonian Systems Modelling in Electrical Engineering
Band 43
Herausgeber: Springer, Cham.
van Beurden, M., Budko, N.V., Ciuprina, G., Schilders, W., Bansal, H., Barbulescu, R. Edition
20245242.
Bartel, Andreas; Clemens, Markus; Günther, Michael; Jacob, Birgit; Reis, Timo
Port-Hamiltonian systems’ modelling in electrical engineering
In van Beurden, Martijn and Budko, Neil V. and Ciuprina, Gabriela and Schilders, Wil and Bansal, Harshit and Barbulescu, Ruxandra, Editor, Scientific Computing in Electrical Engineering: SCEE 2022, Amsterdam, The Netherlands, July 2022ausMathematics in Industry, Seite 133–143
In van Beurden, Martijn and Budko, Neil V. and Ciuprina, Gabriela and Schilders, Wil and Bansal, Harshit and Barbulescu, Ruxandra, Editor
Herausgeber: Springer Cham
20245241.
Bartel, Andreas; Clemens, Markus; Günther, Michael; Jacob, Birgit; Reis, Timo
Port-Hamiltonian systems’ modelling in electrical engineering
In van Beurden, Martijn and Budko, Neil V. and Ciuprina, Gabriela and Schilders, Wil and Bansal, Harshit and Barbulescu, Ruxandra, Editor, Scientific Computing in Electrical Engineering: SCEE 2022, Amsterdam, The Netherlands, July 2022ausMathematics in Industry, Seite 133–143
In van Beurden, Martijn and Budko, Neil V. and Ciuprina, Gabriela and Schilders, Wil and Bansal, Harshit and Barbulescu, Ruxandra, Editor
Herausgeber: Springer Cham
20245240.
Vinod, Vivin; Lyu, Dongyu; Ruth, Marcel; Kleinekathöfer, Ulrich; Schreiner, Peter R.; Zaspel, Peter
Predicting Molecular Energies of Small Organic Molecules with Multifidelity Methods.
2024