Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



2025

5461.

[german] Zeller, Diana; Bohrmann-Linde, Claudia; Mack, Nils; Schrader, Claudia
VR-Lernsettings zum Thema Verbrennungsreaktionen. Ein interdisziplinäres Lehrprojekt zur Produktion von VR-Räumen durch Lehramtsstudierende
In Johannes Huwer, Timm Wilke, Amitabh Banerji, Editor, Band Progress in Digitalisation in Chemistry Education 2024 Digitales Lehren und Lernen an Hochschule und Schule im Fach Chemie
Seite 79-84
Herausgeber: Waxmann Verlag, Münster New York
2025
79-84

ISBN: ISBN 978-3-8188-0042-0

5460.

Elghazi, Bouchra; Jacob, Birgit; Zwart, Hans
Well-posedness of a class of infinite-dimensional port-Hamiltonian systems with boundary control and observation
Januar 2025

5459.

Testa, Filippo
Well-Posedness of the Hodge Wave Equation on a Compact Manifold
2025

5458.

Acu, A.M.; Heilmann, Margareta; Raşa, I.
Convergence of linking Durrmeyer type modifications of generalized Baskatov operators
Bulleting of the Malaysian Math. Sciences Society

5457.

Ehrhardt, Matthias
Ein einfaches Kompartment-Modell zur Beschreibung von Revolutionen am Beispiel des Arabischen Frühlings

5456.

Günther, Michael
Einführung in die Finanzmathematik

5455.

Al{\i}, G; Bartel, A
Electrical RLC networks and diodes

5454.

Gjonaj, Erion; Bahls, Christian Rüdiger; Bandlow, Bastian; Bartel, Andreas; Baumanns, Sascha; Belzen, F; Benderskaya, Galina; Benner, Peter; Beurden, MC; Blaszczyk, Andreas; others
Feldmann, Uwe, 143 Feng, Lihong, 515 De Gersem, Herbert, 341 Gim, Sebasti{\'a}n, 45, 333
MATHEMATICS IN INDUSTRY 14 :587

5453.

Ehrhardt, Matthias
für Angewandte Analysis und Stochastik

5452.

Ehrhardt, Matthias; Günther, Michael; Striebel, Michael
Geometric Numerical Integration Structure-Preserving Algorithms for Lattice QCD Simulations

5451.


High order tensor product interpolation in the Combination Technique
preprint, 14 :25

5450.

Hendricks, Christian; Ehrhardt, Matthias; Günther, Michael
Hybrid finite difference/pseudospectral methods for stochastic volatility models
19th European Conference on Mathematics for Industry, Seite 388

5449.

Ehrhardt, Matthias; Csomós, Petra; Faragó, István; others
Invited Papers

5448.

Günther, Michael
Lab Exercises for Numerical Analysis and Simulation I: ODEs

5447.

Ehrhardt, Matthias; Günther, Michael
Mathematical Modelling of Dengue Fever Epidemics

5446.

Ehrhardt, Matthias
Mathematical Modelling of Monkeypox Epidemics

5445.

Ehrhardt, Matthias; Günther, Michael
Mathematical Study of Grossman's model of investment in health capital

5444.

Bartel, PD Dr A
Mathematische Modellierung in Anwendungen

5443.


Model Order Reduction Techniques for Basket Option Pricing

5442.

Ehrhardt, Matthias; Günther, Michael
Modelling Stochastic Correlations in Finance

5441.

Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit; Maten, Jan
Modelling, Analysis and Simulation with Port-Hamiltonian Systems

5440.

Maten, E Jan W; Ehrhardt, Matthias
MS40: Computational methods for finance and energy markets
19th European Conference on Mathematics for Industry, Seite 377

5439.

Putek, Piotr; PAPLICKI, Piotr; Pulch, Roland; Maten, Jan; Günther, Michael; PA{\L}KA, Ryszard
NONLINEAR MULTIOBJECTIVE TOPOLOGY OPTIMIZATION AND MULTIPHYSICS ANALYSIS OF A PERMANENT-MAGNET EXCITED SYNCHRONOUS MACHINE

5438.

Günther, Michael; Wandelt, Dipl Math Mich{\`e}le
Numerical Analysis and Simulation I: ODEs

5437.

Ehrhardt, Matthias; Günther, Michael
Numerical Evaluation of Complex Logarithms in the Cox-Ingersoll-Ross Model