Finance
The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.
In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.
An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.
Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.
In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.
Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.
Special Interests
Publications
- 2024
5318.
Kienitz, Jörg
Exciting times are ahead - Gaussian views and yield curve extrapolation
Wilmott, 2024 (134) :46–50
2024
Herausgeber: Wilmott Magazine5317.
[german] Zeller, Diana; Bohrmann-Linde, Claudia
Falschinformationen in Videos? Mit dem Konzept KriViNat die Kompetenz der Informationsbewertung stärken
In Bohrmann-Linde, C.; Gökkus, Y.; Meuter, N.; Zeller, D., Editor, Band Netzwerk Digitalisierter Chemieunterricht. Sammelband NeDiChe-Treff 2022
Seite 9-15
Herausgeber: Chemiedidaktik. Bergische Universität Wuppertal
2024
9-155316.
Abel, Ulrich; Acu, Ana-Maria; Heilmann, Margareta; Raşa, Ioan
Genuine Bernstein-Durrmeyer operators preserving 1 and x^j (II)
ATSF 2024
Ankara, Turkey
20245315.
Bartel, Andreas; Schaller, Manuel
Goal-oriented time adaptivity for port-{H}amiltonian systems
20245314.
Schäfers, Kevin; Finkenrath, Jacob; Günther, Michael; Knechtli, Francesco
Hessian-free force-gradient integrators
20245313.
Khosrawi-Rad, Bijan; Eiswirt, Charlotte; Grogorick, Linda; Siemon, Dominik; Robra-Bissantz, Susanne
How the Role of a Pedagogical Conversational Agent Influences Its Perception — Initial Insights
European Conference on Information Systems (ECIS)
Paphos, Cyprus
20245312.
Hosfeld, René; Jacob, Birgit; Schwenninger, Felix; Tucsnak, Marius
Input-to-state stability for bilinear feedback systems
SIAM Journal on Control and Optimization, 62 (3) :1369-1389
20245311.
Jamil, Hamza
Intrusive and non-intrusive uncertainty quantification methodologies for pyrolysis modeling
Fire Safety Journal, 143 :104060
2024
ISSN: 0379-71125310.
Botchev, M. A.; Knizhnerman, L. A.; Schweitzer, M.
Krylov subspace residual and restarting for certain second order differential equations
SIAM J. Sci. Comput., 46 (2) :S223-S253
20245309.
Hastir, Anthony; Jacob, Birgit; Zwart, Hans
Linear-Quadratic optimal control for boundary controlled networks of waves
20245308.
Costa, G Morais Rodrigues; Ehrhardt, Matthias
Mathematical analysis and a nonstandard scheme for a model of the immune response against COVID-19
Band 793
Seite 251–270
Herausgeber: AMS Contemporary Mathematics
2024
251–2705307.
Costa, G Morais Rodrigues; Ehrhardt, Matthias
Mathematical analysis and a nonstandard scheme for a model of the immune response against COVID-19
Band 793
Seite 251–270
Herausgeber: AMS Contemporary Mathematics
2024
251–2705306.
Woick, Adrian; Rinn, Heidi; Grogorick, Linda; Mühleisen, Tamara; Markgraf, Daniel
Metaverse in Higher Education A Systematic Literature Review
37th Bled eConference Digital Economy and Society
Bled, Slowenien
20245305.
Bolten, Matthias; Kilmer, Misha E.; MacLachlan, Scott
Multigrid preconditioning for regularized least-squares problems
SIAM J. Sci. Comput., 46 (5) :s271—s295
2024
ISSN: 1064-82755304.
Schultes, Johanna
Multiobjective optimization of shapes using scalarization techniques
Dissertation
Dissertation
Bergische Universität Wuppertal
20245303.
Allmendinger, Richard; Fonseca, Carlos M.; Sayin, Serpil; Wiecek, Margaret M.; Stiglmayr, Michael
Multiobjective Optimization on a Budget (Dagstuhl Seminar 23361)
2024
Herausgeber: Schloss Dagstuhl – Leibniz-Zentrum für Informatik5302.
Bolten, M.; Doganay, O. T.; Gottschalk, H.; Klamroth, K.
Non-convex shape optimization by dissipative Hamiltonian flows
Eng. Optim. :1—20
20245301.
Bauß, Julius
On improvements of multi-objective branch and bound
Dissertation
Dissertation
Bergische Universität Wuppertal
20245300.
Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
On some Cauchy problems and positive linear operators
Mediterranean Journal of Mathematics, accepted
20245299.
Lorenz, Jan; Zwerschke, Tom; Schaefers, Kevin
Operator splitting for coupled linear port-Hamiltonian systems
20245298.
Kruse, Thomas; Strack, Philipp
Optimal dynamic control of an epidemic
Operations Research, 72 (3) :1031–1048
2024
Herausgeber: INFORMS5297.
Kruse, Thomas; Strack, Philipp
Optimal dynamic control of an epidemic
Operations Research, 72 (3) :1031–1048
2024
Herausgeber: INFORMS5296.
Vinod, Vivin; Kleinekathöfer, Ulrich; Zaspel, Peter
Optimized multifidelity machine learning for quantum chemistry
Mach. Learn.: Sci. Technol., 5 (1) :015054
20245295.
Frommer, Andreas; Ramirez-Hidalgo, Gustavo; Schweitzer, Marcel; Tsolakis, Manuel
Polynomial preconditioning for the action of the matrix square root and inverse square root
Electron. Trans. Numer. Anal., 60 :381-404
20245294.
Jacob, B.; Totzeck, Claudia
Port-Hamiltonian Structure of Interacting Particle Systems and Its Mean-Field Limit
SIAM Multiscale Modelling & Simulation, 22
2024