Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



2023

5112.

Acu, Ana-Maria; Heilmann, Margareta; Raşa, Ioan; Seserman, Andra
Poisson approximation to the binomial distribution: extensions to the convergence of positive operators
Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117
2023

5111.

Ehrhardt, Matthias
Use of interference patterns to control sound field focusing in shallow water
Journal of Marine Science and Engineering, 11 (3) :559
2023
Herausgeber: MDPI

5110.

Ehrhardt, Matthias
Transparent boundary conditions for the nonlocal nonlinear Schrödinger equation: A model for reflectionless propagation of PT-symmetric solitons
Physics Letters, Section A, 459 :128611
2023
Herausgeber: North-Holland

5109.


Transparent boundary conditions for the nonlocal nonlinear Schrödinger equation: A model for reflectionless propagation of PT-symmetric solitons
Physics Letters A :128611
2023
Herausgeber: North-Holland

5108.

David, Amelie; Stroka, Steven; Haussmann, Norman; Schmülling, Benedikt; Clemens, Markus
Überprüfung der elektromagnetischen Umweltverträglichkeit bei induktiver Ladung
In Proff, Heike and Clemens, Markus and Marrón, Pedro J. and Schmülling, Benedikt, Editor
Seite 143-180
Herausgeber: Springer Fachmedien Wiesbaden, Wiesbaden
2023
143-180

5107.

Dobrick, Alexander; Hölz, Julian; Kunze, Markus
Ultra Feller operators from a functional analytic perspective
2023

5106.

Kapllani, Lorenc; Teng, Long; Rottmann, Matthias
Uncertainty quantification for deep learning-based schemes for solving high-dimensional backward stochastic differential equations
Submitted to SIAM-ASA J. Uncertain. Quantif.
2023

5105.

Kapllani, Lorenc; Teng, Long; Rottmann, Matthias
Uncertainty quantification for deep learning-based schemes for solving high-dimensional backward stochastic differential equations
2023

5104.

Dobrick, Alexander; Hölz, Julian
Uniform convergence of solutions to stochastic hybrid models of gene regulatory networks
2023

5103.

Lund, Kathryn; Schweitzer, Marcel
The Frechet derivative of the tensor t-function
Calcolo, 60 :35
2023

5102.

Ehrhardt, Matthias; Kruse, Thomas; Tordeux, Antoine
The Collective Dynamics of a Stochastic Port-Hamiltonian Self-Driven Agent Model in One Dimension
arXiv preprint arXiv:2303.14735
2023

5101.

Schäfers, Kevin; Bartel, Andreas; Günther, Michael; Hachtel, Christoph
Spline-oriented inter/extrapolation-based multirate schemes of higher order
Applied Mathematics Letters, 136 :108464
2023
Herausgeber: Pergamon

5100.


Studies on the improvement of the matching uncertainty definition in top-quark processes simulated with Powheg+Pythia 8
CERN, Geneva
2023

5099.

Clemens, Markus; Günther, Michael
Stability of Transient Coupled Multi-Model Discrete Electromagnetic Field Formulations Using the Port-Hamiltonian System Framework
2023 International Conference on Electromagnetics in Advanced Applications (ICEAA), Seite 1–1
Herausgeber: IEEE
2023

5098.

Clemens, Markus; Günther, Michael
Stability of Transient Coupled Multi-Model Discrete Electromagnetic Field Formulations Using the Port-Hamiltonian System Framework
2023 International Conference on Electromagnetics in Advanced Applications (ICEAA), Seite 1–1
Herausgeber: IEEE
2023

5097.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Strong stochastic Runge-Kutta-Munthe-Kaas methods for nonlinear Itô SDEs on manifolds
Applied Numerical Mathematics, 193 :196–203
2023
Herausgeber: North-Holland

5096.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Strong stochastic Runge-Kutta-Munthe-Kaas methods for nonlinear Itô SDEs on manifolds
Applied Numerical Mathematics, 193 :196–203
2023
Herausgeber: North-Holland

5095.

Abdul Halim, Adila; others
Update on the Offline Framework for AugerPrime and production of reference simulation libraries using the VO Auger grid resources
PoS, ICRC2023 :248
2023

5094.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Strong stochastic Runge-Kutta–Munthe-Kaas methods for nonlinear Itô SDEs on manifolds
Applied Numerical Mathematics
2023
ISSN: 0168-9274

5093.

Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Structure-preserving identification of port-Hamiltonian systems - a sensitivity-based approach
2023

5092.

Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Structure-preserving identification of port-Hamiltonian systems--a sensitivity-based approach
arXiv preprint arXiv:2301.02019
2023

5091.

Bolten, Matthias; Donatelli, M.; Ferrari, P.; Furci, I.
Symbol based convergence analysis in block multigrid methods with applications for Stokes problems
Appl. Numer. Math., 193 :109-130
2023

5090.

Bolten, Matthias; Friedhoff, S.; Hahne, J.
Task graph-based performance analysis of parallel-in-time methods
Parallel Comput., 118 :103050
2023

5089.

Bolten, Matthias; Donatelli, Marco; Ferrari, Paola; Furci, Isabella
Symbol based convergence analysis in multigrid methods for saddle point problems
Linear Algebra Appl., 671 :67--108
2023

5088.

Bolten, Matthias; Donatelli, Marco; Ferrari, Paola; Furci, Isabella
Symbol based convergence analysis in multigrid methods for saddle point problems
Linear Algebra Appl., 671 :67--108
2023

Weitere Infos über #UniWuppertal: