Index Analysis
DAEs are no ODEs. Actually, Differential agebraic equations (DAEs) are a mixture of ordinary differential equations (ODEs) and algebraic relations. This may create difficulties, which are not seen at the first sight. The analysis shows that due this mixture hidden differentiation might occur. Recalling from analysis that differentiation is not an unbounded operator, such a process is much more difficult to handle than the integrals used for solving ODEs. E.g. imagine a sinosoidal signal of small amplitude but with high frequency, such as a numerical error, the derivative is of much larger magnitude.
Clearly, the more derivatives involved in the exact solution of a DAE, the more one needs to be careful in numerical computations. The index is a measure for this difficutly. That is why it is important to know the index before simulation.
Group members working on that field
- Andreas Bartel
- Michael Günther
Cooperations
- Giuseppe Ali (Academia)
- Sascha Baumanns (Academia)
- Caren Tischendorf (Academia)
Publications
5391.
High order tensor product interpolation in the Combination Technique
preprint, 14 :255390.
Hendricks, Christian; Ehrhardt, Matthias; Günther, Michael
Hybrid finite difference/pseudospectral methods for stochastic volatility models
19th European Conference on Mathematics for Industry, Seite 3885389.
Ehrhardt, Matthias; Csomós, Petra; Faragó, István; others
Invited Papers5388.
Günther, Michael
Lab Exercises for Numerical Analysis and Simulation I: ODEs5387.
Ehrhardt, Matthias; Günther, Michael
Mathematical Modelling of Dengue Fever Epidemics5386.
Ehrhardt, Matthias
Mathematical Modelling of Monkeypox Epidemics5385.
Ehrhardt, Matthias; Günther, Michael
Mathematical Study of Grossman's model of investment in health capital5384.
Bartel, PD Dr A
Mathematische Modellierung in Anwendungen5383.
Model Order Reduction Techniques for Basket Option Pricing5382.
Ehrhardt, Matthias; Günther, Michael
Modelling Stochastic Correlations in Finance5381.
Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit; Maten, Jan
Modelling, Analysis and Simulation with Port-Hamiltonian Systems5380.
Maten, E Jan W; Ehrhardt, Matthias
MS40: Computational methods for finance and energy markets
19th European Conference on Mathematics for Industry, Seite 3775379.
Putek, Piotr; PAPLICKI, Piotr; Pulch, Roland; Maten, Jan; Günther, Michael; PA{\L}KA, Ryszard
NONLINEAR MULTIOBJECTIVE TOPOLOGY OPTIMIZATION AND MULTIPHYSICS ANALYSIS OF A PERMANENT-MAGNET EXCITED SYNCHRONOUS MACHINE5378.
Günther, Michael; Wandelt, Dipl Math Mich{\`e}le
Numerical Analysis and Simulation I: ODEs5377.
Ehrhardt, Matthias; Günther, Michael
Numerical Evaluation of Complex Logarithms in the Cox-Ingersoll-Ross Model5376.
Ehrhardt, Matthias; Günther, Michael
Numerical Pricing of Game (Israeli) Options5375.
Ehrhardt, Matthias; Farkas, Bálint; Günther, Michael; Jacob, Birgit
Operator Splitting and Multirate Schemes5374.
Vázquez, C
PDE modeling and numerical methods for swing option pricing in electricity markets
19th European Conference on Mathematics for Industry, Seite 3905373.
Ehrhardt, Matthias
Positive Schemes for Air Pollution Problems, Optimal Location of Industrial Enterprises and Optimization of their Emissions5372.
Ehrhardt, Matthias; Vázquez, Carlos
Pricing swing options in electricity markets with two stochastic factors: PIDE modeling and numerical solution
3rd International Conference on Computational Finance (ICCF2019), Seite 895371.
Putek, PA; Ter Maten, EJW
Reliability-based Low Torque Ripple Design of Permanent Magnet Machine5370.
Knechtli, F; Striebel, M; Wandelt, M
Symmetric \& Volume Preserving Projection Schemes5369.
Putek, Piotr; Günther, Michael
Topology Optimization and Analysis of a PM synchronous Machine for Electrical Automobiles5368.
Ehrhardt, Matthias; Günther, Michael
Vorhersage-Modelle am Beispiel des Corona-Virus COVID-195367.
Acu, A.M.; Heilmann, Margareta; Raşa, I.
Voronovskaja type results for the Aldaz-Kounchev-Render versions of generalized Baskakov Operators
submitted