Applied and Computational Mathematics (ACM)

Artificial Boundary Conditions

When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).

We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.

Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.

Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.

Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.

Software

Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.

Publications



2024

4952.

Ehrhardt, M.; Kruse, T.; Tordeux, A.
Dynamics of a Stochastic port-{H}amiltonian Self-Driven Agent Model in One Dimension
ESAIM: Math. Model. Numer. Anal.
2024

4951.


Efficient and Simple Extraction Protocol for Triterpenic Acids from Apples
Journal of Chemical Education, 101 :2087-2093
April 2024
Herausgeber: ACS

4950.

Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
Characteristic boundary condition for thermal lattice Boltzmann methods
Computers & Mathematics with Applications, 157 :195-208
Juli 2024
ISSN: 0898-1221

4949.

Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
Characteristic boundary condition for thermal lattice Boltzmann methods
Computers & Mathematics with Applications, 157 :195–208
2024
Herausgeber: Pergamon

4948.

Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Asymptotic properties for a general class of Szasz-Mirakjan-Durrmeyer operators
2024

4947.

Vinod, Vivin; Zaspel, Peter
Investigating Data Hierarchies in Multifidelity Machine Learning for Excitation Energies
2024

4946.

Vinod, Vivin; Zaspel, Peter
Assessing Non-Nested Configurations of Multifidelity Machine Learning for Quantum-Chemical Properties
Machine Learning: Science and Technology, 5 (4) :045005
2024

4945.

Maamar, Maghnia Hamou; Ehrhardt, Matthias; Tabharit, Louiza
A nonstandard finite difference scheme for a time-fractional model of Zika virus transmission
Mathematical Biosciences and Engineering, 21 (1) :924–962
2024
Herausgeber: AIMS Press

4944.

Costa, G Morais Rodrigues; Lobosco, Marcelo; Ehrhardt, Matthias; Reis, Ruy Freitas
Mathematical analysis and a nonstandard scheme for a model of the immune response against COVID-19
Band 793
Seite 251–270
Herausgeber: AMS Contemporary Mathematics
2024
251–270

4943.

Bartel, Andreas; Clemens, Markus; Günther, Michael; Jacob, Birgit; Reis, Timo
Port-Hamiltonian systems’ modelling in electrical engineering
In van Beurden, Martijn and Budko, Neil V. and Ciuprina, Gabriela and Schilders, Wil and Bansal, Harshit and Barbulescu, Ruxandra, Editor, Scientific Computing in Electrical Engineering: SCEE 2022, Amsterdam, The Netherlands, July 2022ausMathematics in Industry, Seite 133–143
In van Beurden, Martijn and Budko, Neil V. and Ciuprina, Gabriela and Schilders, Wil and Bansal, Harshit and Barbulescu, Ruxandra, Editor
Herausgeber: Springer Cham
2024

4942.

Vinod, Vivin; Lyu, Dongyu; Ruth, Marcel; Kleinekathöfer, Ulrich; Schreiner, Peter R.; Zaspel, Peter
Predicting Molecular Energies of Small Organic Molecules with Multifidelity Methods.
2024

4941.

Vinod, Vivin; Zaspel, Peter
QeMFi: A Multifidelity Dataset of Quantum Chemical Properties of Diverse Molecules
2024

4940.

Ackermann, Julia; Kruse, Thomas; Urusov, Mikhail
Reducing Obizhaeva-Wang-type trade execution problems to LQ stochastic control problems
Finance and Stochastics, 28 (3) :813–863
2024
Herausgeber: Springer Verlag

4939.

Hölz, Julian
A Note on the Uniform Ergodicity of Dynamical Systems.
2024

4938.

Ackermann, Julia; Kruse, Thomas; Urusov, Mikhail
Self-exciting price impact via negative resilience in stochastic order books
Annals of Operations Research, 336 (1) :637–659
2024
Herausgeber: Springer Netherlands

4937.

Clevenhaus, Anna; Totzeck, Claudia; Ehrhardt, Matthias
A numerical study of the impact of variance boundary conditions for the Heston model
In Burnecki, K. and Szwabiński, J. and Teuerle, M., Editor
Springer
In Burnecki, K. and Szwabiński, J. and Teuerle, M., Editor
Herausgeber: Bergische Universität Wuppertal
2024

4936.

Andersen, Kim Allan; Boomsma, Trine Krogh; Efkes, Britta; Forget, Nicolas
Sensitivity Analysis of the Cost Coefficients in Multiobjective Integer Linear Optimization
Management Science
2024

4935.

[english] Grandrath, Rebecca; Bohrmann-Linde, Claudia
Simple biofuel cells: the superpower of baker’s yeast
Science in School - The European journal for science teachers, 66
Februar 2024

4934.

Palitta, Davide; Schweitzer, Marcel; Simoncini, Valeria
Sketched and truncated polynomial Krylov methods: Evaluation of matrix functions
Numer. Linear Algebra Appl.
2024

4933.

Palitta, Davide; Schweitzer, Marcel; Simoncini, Valeria
Sketched and truncated polynomial Krylov subspace methods: Matrix Sylvester equations
Math. Comp.
2024

4932.

Santos, Daniela Scherer; Klamroth, Kathrin; Martins, Pedro; Paquete, Luís
Solving the multiobejctive quasi-clique problem
2024

4931.

Antunes, Carlos Henggeler; Fonseca, Carlos M.; Paquete, Luís; Stiglmayr, Michael
Special issue on exact and approximation methods for mixed-integer multi-objective optimization
Mathematical Methods of Operations Research
August 2024
Herausgeber: Springer Science and Business Media LLC
ISSN: 1432-5217

4930.

Hastir, Anthony; Jacob, Birgit; Zwart, Hans
Spectral analysis of a class of linear hyperbolic partial differential equations
IEEE Control Systems Letters, 8 :766-771
2024

4929.

Bartel, A.; Clemens, M.; Günther, M.; Jacob, Birgit; Reis, T.
Port-Hamiltonian Systems Modelling in Electrical Engineering
Band 43
Herausgeber: Springer, Cham.
van Beurden, M., Budko, N.V., Ciuprina, G., Schilders, W., Bansal, H., Barbulescu, R. Edition
2024

4928.

Frommer, Andreas; Ramirez-Hidalgo, Gustavo; Schweitzer, Marcel; Tsolakis, Manuel
Polynomial preconditioning for the action of the matrix square root and inverse square root
Electron. Trans. Numer. Anal., 60 :381-404
2024

Weitere Infos über #UniWuppertal: