Applied and Computational Mathematics (ACM)

Artificial Boundary Conditions

When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).

We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.

Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.

Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.

Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.

Software

Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.

Publications



2024

5318.

Carslaw, Nicola; Bekö, Gabriel; Langer, Sarka; Schoemaecker, Coralie; Mihucz, Victor G.; Dudzinska, Marzenna; Wiesen, Peter; Nehr, Sascha; Huttunen, Kati; Querol, Xavier; Shaw, David
A new framework for indoor air chemistry measurements: Towards a better understanding of indoor air pollution
Indoor Environments, 1 (1) :100001
März 2024
ISSN: 29503620

5317.

Ehrhardt, Matthias
A nonstandard finite difference scheme for a time-fractional model of Zika virus transmission
Mathematical Biosciences and Engineering, 21 (1) :924–962
2024
Herausgeber: AIMS Press

5316.

Ehrhardt, Matthias
A nonstandard finite difference scheme for a time-fractional model of Zika virus transmission
Mathematical Biosciences and Engineering, 21 (1) :924–962
2024
Herausgeber: AIMS Press

5315.

Hölz, Julian
A Note on the Uniform Ergodicity of Dynamical Systems.
2024

5314.

Clevenhaus, Anna; Totzeck, Claudia; Ehrhardt, Matthias
A numerical study of the impact of variance boundary conditions for the Heston model
In Burnecki, K. and Szwabiński, J. and Teuerle, M., Editor
Springer
In Burnecki, K. and Szwabiński, J. and Teuerle, M., Editor
Herausgeber: Bergische Universität Wuppertal
2024

5313.

Clevenhaus, Anna; Totzeck, Claudia; Ehrhardt, Matthias
A numerical study of the impact of variance boundary conditions for the Heston model
In Burnecki, K. and Szwabiński, J. and Teuerle, M., Editor
Springer
In Burnecki, K. and Szwabiński, J. and Teuerle, M., Editor
Herausgeber: Bergische Universität Wuppertal
2024

5312.

Clemens, Markus; Henkel, Marvin-Lucas; Kasolis, Fotios; Günther, Michael
A Port-Hamiltonian System Perspective on Electromagneto-Quasistatic Field Formulations of Darwin-Type
Preprint
2024

5311.

Clemens, Markus; Henkel, Marvin-Lucas; Kasolis, Fotios; Günther, Michael
A Port-Hamiltonian System Perspective on Electromagneto-Quasistatic Field Formulations of Darwin-Type
Preprint
2024

5310.

Hoang, Manh Tuan; Ehrhardt, Matthias
A second-order nonstandard finite difference method for a general Rosenzweig-MacArthur predator--prey model
Journal of Computational and Applied Mathematics :115752
2024
Herausgeber: Elsevier

5309.

Dächert, Kerstin; Fleuren, Tino; Klamroth, Kathrin
A simple, efficient and versatile objective space algorithm for multiobjective integer programming
Mathematical Methods of Operations Research, 100 :351—384
2024

5308.

Vinod, Vivin; Zaspel, Peter
Assessing Non-Nested Configurations of Multifidelity Machine Learning for Quantum-Chemical Properties
Machine Learning: Science and Technology, 5 (4) :045005
2024

5307.

Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Asymptotic expansions for variants of the gamma and Post–Widder operators preserving 1 and x^j
Mathematical Methods in the Applied Sciences, 47 (18) :13718-13733
2024

5306.

Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Asymptotic properties for a general class of Szász-Mirakjan-Durrmeyer operators
2024

5305.

Bauß, Julius; Stiglmayr, Michael
Augmenting Biobjective Branch & Bound with Scalarization-Based Information
Mathematical Methods of Operations Research
2024

5304.

Vinod, Vivin; Zaspel, Peter
Benchmarking Data Efficiency in Δ-ML and Multifidelity Models for Quantum Chemistry.
2024

5303.

Kiesling, Elisabeth; Venzlaff, Julian; Bohrmann-Linde, Claudia
BNE-Fortbildungsreihe für Lehrkräfte und Studierende in der Didaktik der Chemie
Herausgeber: Gemeinsamer Studienausschuss (GSA) in der School of Education an der Bergischen Universität Wuppertal
Newsletter Lehrer*innenbildung an der Bergischen Universität Wuppertal
Juli 2024

5302.

Klass, Friedemann; Bartel, Andreas; Gabbana, PD Alessandro
Boundary conditions for multi-speed lattice Boltzmann methods
2024

5301.

Bailo, Rafael; Barbaro, Alethea; Gomes, Susana N.; Riedl, Konstantin; Roith, Tim; Totzeck, Claudia; Vaes, Urbain
CBX: Python and Julia Packages for Consensus-Based Interacting Particle Methods
Journal of Open Source Software, 9 (98) :6611
2024
Herausgeber: The Open Journal

5300.

Fasi, Massimiliano; Gaudreault, Stéphane; Lund, Kathryn; Schweitzer, Marcel
Challenges in computing matrix functions
2024

5299.

Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
Characteristic boundary condition for thermal lattice Boltzmann methods
Computers & Mathematics with Applications, 157 :195–208
2024
Herausgeber: Pergamon

5298.

Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
Characteristic boundary condition for thermal lattice Boltzmann methods
Computers & Mathematics with Applications, 157 :195-208
Juli 2024
ISSN: 0898-1221

5297.

Yoda, R.; Bolten, M.; Nakajima, K.; Fujii, A.
Coarse-grid operator optimization in multigrid reduction in time for time-dependent Stokes and Oseen problems
Jpn. J. Ind. Appl. Math.
2024

5296.

Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Commutativity and spectral properties for a general class of Szász-Mirakjan-Durrmeyer operators
Advances in Operator Theory, 10 (1) :14
2024

5295.

Vorberg, Lukas; Jacob, Birgit; Wyss, Christian
Computing the Quadratic Numerical Range
Journal of Computational and Applied Mathematics :116049
2024

5294.

Klamroth, Kathrin; Stiglmayr, Michael; Totzeck, Claudia
Consensus-Based Optimization for Multi-Objective Problems: A Multi-Swarm Approach
Journal of Global Optimization
2024