Artificial Boundary Conditions
When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).
We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.
Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.
Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.
Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.
Software
Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.
Publications
- 2025
5385.
Lorenz, Jan; Zwerschke, Tom; Günther, Michael; Schäfers, Kevin
Operator splitting for coupled linear port-Hamiltonian systems
Applied Mathematics Letters, 160 :109309
2025
Herausgeber: Elsevier5384.
Sinani, Mario; Wynn, Andrew; Palacios, Rafael
Physics-Informed Data-Driven Modelling of Nonlinear Aerodynamic Forces of the Pazy Wing
AIAA SciTech Forum, 6-10 January
01 20255383.
[german] Zeller, Diana; Bohrmann-Linde, Claudia; Mack, Nils; Schrader, Claudia
Produktion eigener VR-Lernsettings im Projekt FoPro-VR. Ein interdisziplinärer Lehransatz für die Lehramtsausbildung
In Mrohs, Lorenz; Franz, Julia; Herrmann, Dominik; Lindner, Konstantin; Staake, Thorsten, Editor, Digitales Lehren und Lernen an der Hochschule. Strategien - Bedingungen - Umsetzung
Seite 191-204
Herausgeber: transcript, Bielefeld
2025
191-204ISBN: 9783839471203
5382.
Clément, François; Doerr, Carola; Klamroth, Kathrin; Paquete, Luís
Searching Permutations for Constructing Uniformly Distributed Point Sets
PNAS
20255381.
Palitta, Davide; Schweitzer, Marcel; Simoncini, Valeria
Sketched and truncated polynomial Krylov methods: Evaluation of matrix functions
Numer. Linear Algebra Appl., 32 :e2596
20255380.
Liu, Qian; Yanchang, Zhang; Zuan, Wang; Wang, Miao; Zhao, Xiaowei
Small-signal stability of sequence-decomposed grid-forming IBRs with DC-link voltage dynamics
Februar 20255379.
Arora, Sahiba; Mui, Jonathan
Smoothing of operator semigroups under relatively bounded perturbations
20255378.
Santos, Daniela Dos; Klamroth, Kathrin; Martins, Pedro; Paquete, Luís
Solving the Multiobejctive Quasi-Clique Problem
European Journal of Operational Research, 323 :409—424
20255377.
Elghazi, Bouchra; Jacob, Birgit; Zwart, Hans
Well-posedness of a class of infinite-dimensional port-Hamiltonian systems with boundary control and observation
Januar 20255376.
Acu, A.M.; Heilmann, Margareta; Raşa, I.
Convergence of linking Durrmeyer type modifications of generalized Baskatov operators
Bulleting of the Malaysian Math. Sciences Society5375.
Ehrhardt, Matthias
Ein einfaches Kompartment-Modell zur Beschreibung von Revolutionen am Beispiel des Arabischen Frühlings5374.
Günther, Michael
Einführung in die Finanzmathematik5373.
Al{\i}, G; Bartel, A
Electrical RLC networks and diodes5372.
Gjonaj, Erion; Bahls, Christian Rüdiger; Bandlow, Bastian; Bartel, Andreas; Baumanns, Sascha; Belzen, F; Benderskaya, Galina; Benner, Peter; Beurden, MC; Blaszczyk, Andreas; others
Feldmann, Uwe, 143 Feng, Lihong, 515 De Gersem, Herbert, 341 Gim, Sebasti{\'a}n, 45, 333
MATHEMATICS IN INDUSTRY 14 :5875371.
Ehrhardt, Matthias
für Angewandte Analysis und Stochastik5370.
Ehrhardt, Matthias; Günther, Michael; Striebel, Michael
Geometric Numerical Integration Structure-Preserving Algorithms for Lattice QCD Simulations5369.
High order tensor product interpolation in the Combination Technique
preprint, 14 :255368.
Hendricks, Christian; Ehrhardt, Matthias; Günther, Michael
Hybrid finite difference/pseudospectral methods for stochastic volatility models
19th European Conference on Mathematics for Industry, Seite 3885367.
Ehrhardt, Matthias; Csomós, Petra; Faragó, István; others
Invited Papers5366.
Günther, Michael
Lab Exercises for Numerical Analysis and Simulation I: ODEs5365.
Ehrhardt, Matthias; Günther, Michael
Mathematical Modelling of Dengue Fever Epidemics5364.
Ehrhardt, Matthias
Mathematical Modelling of Monkeypox Epidemics5363.
Ehrhardt, Matthias; Günther, Michael
Mathematical Study of Grossman's model of investment in health capital5362.
Bartel, PD Dr A
Mathematische Modellierung in Anwendungen5361.
Model Order Reduction Techniques for Basket Option Pricing