Artificial Boundary Conditions
When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).
We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.
Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.
Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.
Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.
Software
Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.
Publications
- 2024
- 5243.Bartel, Andreas; Clemens, Markus; Günther, Michael; Jacob, Birgit; Reis, Timo
 Port-Hamiltonian systems’ modelling in electrical engineering
 In van Beurden, Martijn and Budko, Neil V. and Ciuprina, Gabriela and Schilders, Wil and Bansal, Harshit and Barbulescu, Ruxandra, Editor, Scientific Computing in Electrical Engineering: SCEE 2022, Amsterdam, The Netherlands, July 2022ausMathematics in Industry, Seite 133–143
 In van Beurden, Martijn and Budko, Neil V. and Ciuprina, Gabriela and Schilders, Wil and Bansal, Harshit and Barbulescu, Ruxandra, Editor
 Herausgeber: Springer Cham
 2024
- 5242.Vinod, Vivin; Lyu, Dongyu; Ruth, Marcel; Kleinekathöfer, Ulrich; Schreiner, Peter R.; Zaspel, Peter
 Predicting Molecular Energies of Small Organic Molecules with Multifidelity Methods.
 2024
- 5241.Ackermann, Julia; Kruse, Thomas; Urusov, Mikhail
 Reducing Obizhaeva-Wang-type trade execution problems to LQ stochastic control problems
 Finance and Stochastics, 28 (3) :813–863
 2024
 Herausgeber: Springer Verlag
- 5240.Ackermann, Julia; Kruse, Thomas; Urusov, Mikhail
 Reducing Obizhaeva-Wang-type trade execution problems to LQ stochastic control problems
 Finance and Stochastics, 28 (3) :813–863
 2024
 Herausgeber: Springer Verlag
- 5239.Saini, B. S.; Miettinen, K.; Klamroth, Kathrin; Steuer, R. E.; Dächert, Kerstin
 SCORE Band Visualizations: Supporting Decision Makers in Comparing High-Dimensional Outcome Vectors in Multiobjective Optimization
 IEEE Access, 12 :164371—164388
 2024
- 5238.Ackermann, Julia; Kruse, Thomas; Urusov, Mikhail
 Self-exciting price impact via negative resilience in stochastic order books
 Annals of Operations Research, 336 (1) :637–659
 2024
 Herausgeber: Springer Netherlands
- 5237.Ackermann, Julia; Kruse, Thomas; Urusov, Mikhail
 Self-exciting price impact via negative resilience in stochastic order books
 Annals of Operations Research, 336 (1) :637–659
 2024
 Herausgeber: Springer Netherlands
- 5236.Andersen, Kim Allan; Boomsma, Trine Krogh; Efkes, Britta; Forget, Nicolas
 Sensitivity Analysis of the Cost Coefficients in Multiobjective Integer Linear Optimization
 Management Science
 2024
- 5235.[english] Grandrath, Rebecca; Bohrmann-Linde, Claudia
 Simple biofuel cells: the superpower of baker’s yeast
 Science in School - The European journal for science teachers, 66
 Februar 2024
- 5234.Wissdorf, Walter; Thinius, Marco; Benter, Thorsten
 Simulation of Space Charge Effects in Fourier Transform Quadrupole Ion Traps (FT-QITs)
 Journal of the American Society for Mass Spectrometry, 35 (12) :2969—2983
 Dezember 2024
 ISSN: 1044-0305, 1879-1123
- 5233.Palitta, Davide; Schweitzer, Marcel; Simoncini, Valeria
 Sketched and truncated polynomial Krylov subspace methods: Matrix Sylvester equations
 Math. Comp.
 2024
- 5232.Liu, Qian
 Small-signal synchronization stability of sequence-decomposed grid-forming IBRs
 Dezember 2024
- 5231.Antunes, Carlos Henggeler; Fonseca, Carlos M.; Paquete, Luís; Stiglmayr, Michael
 Special issue on exact and approximation methods for mixed-integer multi-objective optimization
 Mathematical Methods of Operations Research
 August 2024
 Herausgeber: Springer Science and Business Media LLC
 ISSN: 1432-5217
- 5230.Hastir, Anthony; Jacob, Birgit; Zwart, Hans
 Spectral analysis of a class of linear hyperbolic partial differential equations
 IEEE Control Systems Letters, 8 :766-771
 2024
- 5229.Bartel, Andreas; Diab, Malak; Frommer, Andreas; Günther, Michael; Marheineke, Nicole
 Splitting Techniques for DAEs with port-Hamiltonian Applications
 Preprint
 2024
- 5228.Bartel, Andreas; Diab, Malak; Frommer, Andreas; Günther, Michael; Marheineke, Nicole
 Splitting Techniques for DAEs with port-Hamiltonian Applications
 Preprint
 2024
- 5227.Bartel, A.; Diab, M.; Frommer, A.; G\"unther ; Marheineke, N.
 Splitting Techniques for DAEs with port-Hamiltonian Applications
 2024
- 5226.
 Sprachsensibler Chemieunterricht digital umgesetzt - Ein Seminarexkurs im Rahmen des Praxissemesters
 2024
- 5225.Ackermann, Julia; Ehrhardt, Matthias; Kruse, Thomas; Tordeux, Antoine
 Stabilisation of stochastic single-file dynamics using port-Hamiltonian systems
 arXiv preprint arXiv:2401.17954
 2024
- 5224.Ackermann, Julia; Ehrhardt, Matthias; Kruse, Thomas; Tordeux, Antoine
 Stabilisation of stochastic single-file dynamics using port-Hamiltonian systems
 Preprint
 2024
- 5223.Ackermann, Julia; Ehrhardt, Matthias; Kruse, Thomas; Tordeux, Antoine
 Stabilisation of stochastic single-file dynamics using port-Hamiltonian systems
 Preprint
 2024
- 5222.Ackermann, Julia; Ehrhardt, Matthias; Kruse, Thomas; Tordeux, Antoine
 Stabilisation of stochastic single-file dynamics using port-Hamiltonian systems
 Preprint
 2024
- 5221.Jacob, Birgit; Glück, Jochen; Meyer, Annika; Wyss, Christian; Zwart, Hans
 Stability via closure relations with applications to dissipative and port-Hamiltonian systems
 J. Evol. Equ., 24 :Paper No. 62
 2024
- 5220.Clemens, Markus; Henkel, Marvin-Lucas; Kasolis, Fotios; Günther, Michael
 Structural Aspects of Electromagneto-Quasistatic Field Formulations of Darwin-Type Derived in the Port-Hamiltonian System Framework
 TechRxiv
 2024
 Herausgeber: IEEE
- 5219.Clemens, Markus; Henkel, Marvin-Lucas; Kasolis, Fotios; Günther, Michael
 Structural Aspects of Electromagneto-Quasistatic Field Formulations of Darwin-Type Derived in the Port-Hamiltonian System Framework
 TechRxiv
 2024
 Herausgeber: IEEE