Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



2019

3992.

Ankirchner, Stefan; Kruse, Thomas; Urusov, Mikhail
Wasserstein convergence rates for random bit approximations of continuous Markov processes
Journal of Mathematical Analysis and Applications, 493 (2) :124543
2019
Herausgeber: Academic Press

3991.

Jacob, Birgit; Wegner, Sven-Ake
Well-posedness of a class of hyperbolic partial differential equations on the semi-axis
J. Evol. Equ., 19 (4) :1111--1147
2019

3990.

Jacob, Birgit; Kaiser, Julia T.
Well-posedness of systems of 1-{D} hyperbolic partial differential equations
J. Evol. Equ., 19 (1) :91--109
2019

3989.

Jacob, Birgit; Kaiser, Julia T.
Well-posedness of systems of 1-D hyperbolic partial differential equations
J. Evol. Equ., 19 (1) :91--109
2019

3988.

Ehrhardt, Matthias
Wide-angle mode parabolic equation with transparent boundary conditions and its applications in shallow water acoustics
2019 Days on Diffraction (DD), Seite 221–225
IEEE
Herausgeber: IEEE
2019

3987.

Ehrhardt, Matthias
Wide-angle mode parabolic equation with transparent boundary conditions and its applications in shallow water acoustics
2019 Days on Diffraction (DD), Seite 221--225
IEEE
2019

3986.

Ehrhardt, Matthias
Wide-angle mode parabolic equation with transparent boundary conditions and its applications in shallow water acoustics
2019 Days on Diffraction (DD), Seite 221–225
IEEE
Herausgeber: IEEE
2019

3985.

Cuny, Christophe; Eisner, Tanja; Farkas, Bálint
Wiener's lemma along primes and other subsequences
Advances in Mathematics, 347 :340 - 383
2019

3984.

Jacob, Birgit; Morris, Kirsten A.; Zwart, Hans
Zero dynamics for networks of waves
Automatica J. IFAC, 103 :310--321
2019
2018

3983.

Sharma, M. K.; Göstl, Robert; Frijns, A. J. H.; Wieringa, F. P.; Kooman, J. P.; Sijbesma, R. P.; Smeulders, D. M. J.
A Fluorescent Micro-Optofluidic Sensor for In-Line Ion Selective Electrolyte Monitoring
IEEE Sensors Journal, 18 (10) :3946--3951
Mai 2018
ISSN: 1530-437X

3982.


[1,2]-Migration Reactions Catalyzed by Gold Complexes and their Applications in Total Synthesis
Israel Journal of Chemistry, 58 (5) :596–607
2018
ISSN: 1869-5868

3981.

Jacob, Birgit; Partington, Jonathan R.; Pott, Sandra; Wynn, Andrew
{\(\beta\)}-admissibility of observation operators for hypercontractive semigroups
J. Evol. Equ., 18 (1) :153--170
2018

3980.

Jacob, Birgit; Partington, Jonathan R.; Pott, Sandra; Wynn, Andrew
β-admissibility of observation operators for hypercontractive semigroups
J. Evol. Equ., 18 (1) :153--170
2018

3979.

Daners, Daniel; Glück, Jochen
A criterion for the uniform eventual positivity of operator semigroups
Integral Equations Operator Theory, 90 (4) :Paper No. 46, 19
2018

3978.

Farkas, Bálint; Nagy, Béla; Révész, Szilárd Gy.
A minimax problem for sums of translates on the torus
Transactions of the London Mathematical Society, 5 (1) :1-46
2018

3977.

Kossaczky, Igor; Ehrhardt, Matthias; Günther, Michael
A new convergent explicit tree-grid method for HJB equations in one space dimension
Numerical Mathematics: Theory, Methods and Applications, 11 (1) :1–29
2018
Herausgeber: Global Science Press

3976.

Ehrhardt, Matthias; Günther, Michael
A new convergent explicit Tree-Grid method for HJB equations in one space dimension
Preprint, 17 (06)
2018

3975.

Kossaczky, Igor; Ehrhardt, Matthias; Günther, Michael
A new convergent explicit tree-grid method for HJB equations in one space dimension
Numerical Mathematics: Theory, Methods and Applications, 11 (1) :1–29
2018
Herausgeber: Global Science Press

3974.

Kossaczky, Igor; Ehrhardt, Matthias; Günther, Michael
A new convergent explicit tree-grid method for HJB equations in one space dimension
Numerical Mathematics: Theory, Methods and Applications, 11 (1) :1–29
2018
Herausgeber: Global Science Press

3973.

Heilmann, Margareta; Raşa, Ioan
A nice representation for a link between Baskakov-and Szász–Mirakjan–Durrmeyer operators and their kantorovich variants
Results in Mathematics, 74 (1) :9
2018

3972.

Glück, Jochen
A note on lattice ordered $C^*$-algebras and Perron-Frobenius theory
Math. Nachr., 291 (11-12) :1727--1732
2018

3971.

Bartel, Andreas; Ehrhardt, Matthias
A numerical tool for the study of the hydrodynamic recovery of the lattice Boltzmann Method
Computers & Fluids, 172 :241–250
2018
Herausgeber: Pergamon

3970.

Bartel, Andreas; Ehrhardt, Matthias
A numerical tool for the study of the hydrodynamic recovery of the Lattice Boltzmann Method
Computers & Fluids, 172 :241--250
2018
Herausgeber: Pergamon

3969.

Bartel, Andreas; Ehrhardt, Matthias
A numerical tool for the study of the hydrodynamic recovery of the lattice Boltzmann Method
Computers & Fluids, 172 :241–250
2018
Herausgeber: Pergamon

3968.

Harbrecht, Helmut; Zaspel, Peter
A scalable H-matrix approach for the solution of boundary integral equations on multi-GPU clusters
2018