Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.
In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.
An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.
Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.
In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.
Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.
Special Interests
Publications
- 2020
4292.
Doganay, Onur Tanil; Gottschalk, Hanno; Hahn, Camilla; Klamroth, Kathrin; Schultes, Johanna; Stiglmayr, Michael
Gradient based biobjective shape optimization to improve reliability and cost of ceramic components
Optimization and Engineering, 21 (4) :1359-1387
2020
Herausgeber: Springer4291.
Doganay, Onur Tanil; Gottschalk, Hanno; Hahn, Camilla; Klamroth, Kathrin; Schultes, Johanna; Stiglmayr, Michael
Gradient based biobjective shape optimization to improve reliability and cost of ceramic components
Optimization and Engineering, 21 (4) :1359-1387
20204290.
Xue, Chaoyang; Zhang, Chenglong; Ye, Can; Liu, Pengfei; Catoire, Valéry; Krysztofiak, Gisèle; Chen, Hui; Ren, Yangang; Zhao, Xiaoxi; Wang, Jinhe; Zhang, Fei; Zhang, Chongxu; Zhang, Jingwei; An, Junling; Wang, Tao; Chen, Jianmin; Kleffmann, Jörg; Mellouki, Abdelwahid; Mu, Yujing
HONO Budget and Its Role in Nitrate Formation in the Rural North China Plain
Environmental Science \& Technology, 54 (18) :11048--11057
September 2020
ISSN: 0013-936X, 1520-58514289.
Kutzner, Laura; Goloshchapova, Kateryna; Rund, Katharina M.; Jübermann, Martin; Blum, Maximilian; Rothe, Michael; Schunck, Wolf-Hagen; Kühn, Hartmut; Schebb, Nils Helge
Human lipoxygenase isoforms form complex patterns of double and triple oxygenated compounds from eicosapentaenoic acid
Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1865 (12) :158806
2020
ISSN: 1388-19814288.
Burger, Martin; Pinnau, Rene; Totzeck, Claudia; Tse, Oliver; Roth, Andreas
Instantaneous control of interacting particle systems in the mean-field limit
Journal of Computational Physics, 405 :109181
20204287.
Bartel, Andreas; Günther, Michael
Inter/extrapolation-based multirate schemes -- a dynamic-iteration perspective
In Reis, Timo and Grundel, Sara and Schöps, Sebastian, Editor
Seite 73--90
Herausgeber: Springer
2020
73--904286.
Bartel, Andreas; Günther, Michael
Inter/extrapolation-based multirate schemes: a dynamic-iteration perspective
Progress in differential-algebraic equations II, Seite 73--90
Springer International Publishing
20204285.
Bartel, Andreas; Günther, Michael
Inter/extrapolation-based multirate schemes: A dynamic-iteration perspective
In Reis, Timo and Grundel, Sara and Schöps, Sebastian, Editor, Progress in Differential-Algebraic Equations IIausDifferential-Algebraic Equations Forum, Seite 73–90
In Reis, Timo and Grundel, Sara and Schöps, Sebastian, Editor
Herausgeber: Springer Cham
20204284.
Bartel, Andreas; Günther, Michael
Inter/extrapolation-based multirate schemes: A dynamic-iteration perspective
In Reis, Timo and Grundel, Sara and Schöps, Sebastian, Editor, Progress in Differential-Algebraic Equations IIausDifferential-Algebraic Equations Forum, Seite 73–90
In Reis, Timo and Grundel, Sara and Schöps, Sebastian, Editor
Herausgeber: Springer Cham
20204283.
Dietz, Tobias; Klamroth, Kathrin; Kraus, Konstantin; Ruzika, Stefan; Schäfer, Luca E.; Schulze, Britta; Stiglmayr, Michael; Wiecek, Margaret M.
Introducing Multiobjective Complex Systems
European Journal of Operational Research, 280 (2) :581--596
2020
Herausgeber: Elsevier4282.
Kaltenbäck, Michael; Skrepek, Nathanael
Joint functional calculus for definitizable self-adjoint operators on {K}rein spaces
Integral Equations Operator Theory, 92 (4) :Paper No. 29, 36
20204281.
Kaltenbäck, Michael; Skrepek, Nathanael
Joint functional calculus for definitizable self-adjoint operators on Krein spaces
Integral Equations Operator Theory, 92 (4) :Paper No. 29, 36
20204280.
Frommer, Andreas; Jacob, Birgit; Kahl, Karsten; Wyss, Christian; Zwaan, Ian
Krylov type methods exploiting the quadratic numerical range
Electron. Trans. Numer. Anal., 53 :541-561
20204279.
Stiglmayr, Michael
Layout problems with reachability constraint
In J. S. Neufeld and U. Buscher and R. Lasch and D. Möst and J. Schönberger , Editor, Operations Research Proceedings 2019
Operations Research 2019
Dresden
In J. S. Neufeld and U. Buscher and R. Lasch and D. Möst and J. Schönberger , Editor
Herausgeber: Springer, Cham
20204278.
Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Linking Baskakov type operators
CONSTRUCTIVE THEORY OF FUNCTIONS, Sozopol 2019, Seite 23-38
Herausgeber: Prof. Marin Drinov Academic Publishing House
20204277.
[german] Zeller, Diana; Bohrmann-Linde, Claudia
Mit Früchten zum elektrischen Strom! - Dynamische eBooks am Beispiel des Konzepts ''Alternative Solarzellen mit Titandioxid''
Digital Unterrichten Biologie, 3 :10-11
20204276.
Bartel, Andreas; Ehrhardt, Matthias
Modulation of Rayleigh-Benard Convection by Lagrangian Thermal Forcing
APS Division of Fluid Dynamics Meeting Abstracts, Seite T01--008
20204275.
Ferrari, P.; Serra-Capizzano, S.
Multigrid for $\mathbb{Q}_{k}$ Finite Element Matrices using a (block) Toeplitz symbol approach
Mathematics, 8 (1) :Paper No. 5
20204274.
Ferrari, P.; Serra-Capizzano, S.
Multigrid for $\mathbb{Q}_{k}$ Finite Element Matrices using a (block) Toeplitz symbol approach
Mathematics, 8 (1) :Paper No. 5
20204273.
Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas; Nguyen, Tuan Anh
Multilevel Picard approximations for high-dimensional semilinear second-order PDEs with Lipschitz nonlinearities
arXiv preprint arXiv:2009.02484
20204272.
Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas; Nguyen, Tuan Anh
Multilevel Picard approximations for high-dimensional semilinear second-order PDEs with Lipschitz nonlinearities
Preprint
20204271.
Hutzenthaler, Martin; Kruse, Thomas
Multilevel Picard Approximations of High-Dimensional Semilinear Parabolic Differential Equations with Gradient-Dependent Nonlinearities
SIAM Journal on Numerical Analysis, 58 (2) :929--961
2020
Herausgeber: SIAM4270.
Hutzenthaler, Martin; Kruse, Thomas
Multilevel Picard approximations of high-dimensional semilinear parabolic differential equations with gradient-dependent nonlinearities
SIAM Journal on Numerical Analysis, 58 (2) :929–961
2020
Herausgeber: Society for Industrial and Applied Mathematics4269.
Kawai, M.; Ida, A.; Matsuba, H.; Nakajima, K.; Bolten, Matthias
Multiplicative Schwartz-Type Block Multi-Color Gauss-Seidel Smoother for Algebraic Multigrid Methods
Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region, Seite 217-226
Herausgeber: ACM, New York
20204268.
Kawai, M.; Ida, A.; Matsuba, H.; Nakajima, K.; Bolten, M.
Multiplicative Schwartz-Type Block Multi-Color Gauss-Seidel Smoother for Algebraic Multigrid Methods
Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region, Seite 217-226
Herausgeber: ACM, New York
2020