Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



2022

4767.

Ankirchner, Stefan; Kruse, Thomas; Löhr, Wolfgang; Urusov, Mikhail
Properties of the EMCEL scheme for approximating irregular diffusions
Journal of Mathematical Analysis and Applications, 509 (1) :125931
2022
Herausgeber: Academic Press

4766.

Haussmann, N.; Clemens, M.
Quantifizierung der Unsicherheit bei der Expositionsbestimmung des menschlichen Körpers durch niederfrequente Magnetfelder auf GPUs mit Monte-Carlo Simulationen
URSI e.V. Deutschland 2022 Kleinheubacher Tagung (KHB 2022)
Miltenberg, Germany
Herausgeber: Abstract accepted
2022

4765.

Kienitz, J.; McWalter, T. A.; Rudd, R.; Platen, E.
Quantization methods for stochastic differential equations
In Günther, Michael and Schilders, Wil, Editor aus Mathematics in Industry
Seite 299–329
Herausgeber: Springer Cham
2022
299–329

4764.

Kienitz, J.; McWalter, T. A.; Rudd, R.; Platen, E.
Quantization methods for stochastic differential equations
In Günther, Michael and Schilders, Wil, Editor aus Mathematics in Industry
Seite 299–329
Herausgeber: Springer Cham
2022
299–329

4763.

Addazi, A.; others
Quantum gravity phenomenology at the dawn of the multi-messenger era-A review
Prog. Part. Nucl. Phys., 125 :103948
2022

4762.

Bannenberg, Marcus WFM; Ciccazzo, Angelo; Günther, Michael
Reduced order multirate schemes in industrial circuit simulation
Journal of Mathematics in Industry, 12 (1) :1--13
2022
Herausgeber: SpringerOpen

4761.

Bannenberg, Marcus WFM; Ciccazzo, Angelo; Günther, Michael
Reduced order multirate schemes in industrial circuit simulation
Journal of Mathematics in Industry, 12 (1) :12
2022
Herausgeber: Springer Verlag

4760.

Bannenberg, Marcus WFM; Ciccazzo, Angelo; Günther, Michael
Reduced order multirate schemes in industrial circuit simulation
Journal of Mathematics in Industry, 12 (1) :12
2022
Herausgeber: Springer Verlag

4759.

Ackermann, Julia; Kruse, Thomas; Urusov, Mikhail
Reducing Obizhaeva-Wang type trade execution problems to LQ stochastic control problems
arXiv preprint arXiv:2206.03772
2022

4758.

Rudd, Ralph; McWalter, Thomas; Kienitz, Jörg; Platen, Eckhard
Robust product Markovian quantization
The Journal of Computational Finance, 25 (4) :55–78
2022
Herausgeber: Incisive Media

4757.

Aad, Georges; others
Search for flavour-changing neutral-current interactions of a top quark and a gluon in pp collisions at $\sqrt{s}=13$~TeV with the ATLAS detector
Eur. Phys. J. C, 82 (4) :334
2022

4756.

Vorländer, Anna
Search for high-mass resonances in dilepton final states with associated b-jets at the ATLAS experiment
2022

4755.

Austrup, Volker Andreas
Search for scalar and vector leptoquarks decaying into quarks and leptons of different generations
Bergische Universitaet Wuppertal
2022

4754.

Roggel, Jens
Search for vector-like partners of the top and bottom quarks with the ATLAS experiment
Wuppertal U.
2022

4753.

Abreu, Pedro; others
Searches for Ultra-High-Energy Photons at the Pierre Auger Observatory
Universe, 8 (11) :579
2022

4752.

Ackermann, Julia; Kruse, Thomas; Urusov, Mikhail
Self-exciting price impact via negative resilience in stochastic order books
Annals of Operations Research :1--23
2022
Herausgeber: Springer

4751.

Kienitz, J.
Semi-Analytic Conditional Expectations
RISK, 7
2022

4750.

Kienitz, Jörg
Semi-analytical conditional expectations
Risk Cutting Edge, 7
2022
Herausgeber: Incisive Media

4749.

Arora, Sahiba; Glück, Jochen
Stability of (eventually) positive semigroups on spaces of continuous functions
C. R., Math., Acad. Sci. Paris, 360 :771--775
2022

4748.

Gerlach, Moritz; Glück, Jochen; Kunze, Markus
Stability of transition semigroups and applications to parabolic equations
To appear in Trans. Amer. Math. Soc.
2022

4747.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Stochastic Runge-Kutta-Munthe-Kaas methods in the modelling of perturbed rigid bodies
Advances in Applied Mathematics and Mechanics, 14 (2) :528–538
2022
Herausgeber: Global Science Press

4746.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Stochastic Runge-Kutta-Munthe-Kaas methods in the modelling of perturbed rigid bodies
Advances in Applied Mathematics and Mechanics, 14 (2) :528–538
2022
Herausgeber: Global Science Press

4745.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Stochastic Runge-Kutta-Munthe-Kaas methods in the modelling of perturbed rigid bodies
Advances in Applied Mathematics and Mechanics, 14 (2) :528–538
2022
Herausgeber: Global Science Press

4744.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Stochastic Runge-Kutta–Munthe-Kaas Methods in the Modelling of Perturbed Rigid Bodies
AAMM, 14 (2) :528--538
2022
ISSN: 2075-1354

4743.

Kienitz, Jörg
Stochastic volatility – a story of two decades of SABR and Wilmott magazine
Wilmott, 2022 (121) :24–26
2022
Herausgeber: Wilmott Magazine