Finance
The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.
In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.
An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.
Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.
In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.
Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.
Special Interests
Publications
- 2022
4793.
Ehrhardt, Matthias
On decomposition of the fundamental solution of the Helmholtz equation over solutions of iterative parabolic equations
Asymptotic Analysis, 126 (3-4) :215–228
2022
Herausgeber: IOS Press4792.
Ehrhardt, Matthias
On decomposition of the fundamental solution of the Helmholtz equation over solutions of iterative parabolic equations
Asymptotic Analysis, 126 (3-4) :215--228
2022
Herausgeber: IOS Press4791.
Farkas, Bálint; Nagy, Béla; Révész, Szilárd Gy.
On intertwining of maxima of sum of translates functions with nonsingular kernels
Trudy Inst. Mat. Mekh. UrO RAN
20224790.
Jacob, Birgit; Morris, Kirsten
On solvability of dissipative partial differential-algebraic equations
IEEE Control. Syst. Lett., 6 :3188-3193
20224789.
Petrov, {Pavel S.}; Ehrhardt, Matthias; Trofimov, {M. Yu.}
On the decomposition of the fundamental solution of the {Helmholtz} equation via solutions of iterative parabolic equations
Asymptotic Analysis, 126 (3-4) :215--228
2022
Herausgeber: IOS Press4788.
Hutzenthaler, Martin; Kruse, Thomas; Nguyen, Tuan Anh
On the speed of convergence of Picard iterations of BSDEs
Probability, Uncertainty and Quantitative Risk, 7 (2)
2022
Herausgeber: American Institute of Mathematical Sciences4787.
Hutzenthaler, Martin; Kruse, Thomas; Nguyen, Tuan Anh
On the speed of convergence of Picard iterations of BSDEs
Probability, Uncertainty and Quantitative Risk, 7 (2)
2022
Herausgeber: American Institute of Mathematical Sciences4786.
Hutzenthaler, Martin; Kruse, Thomas; Nguyen, Tuan Anh
On the speed of convergence of Picard iterations of BSDEs
Probability, Uncertainty and Quantitative Risk, 7 (2)
2022
Herausgeber: American Institute of Mathematical Sciences4785.
Bartel, Andreas; Günther, Michael; Jacob, Birgit; Reis, Timo
Operator Splitting Based Dynamic Iteration for Linear Port-{H}amiltonian Systems
arXiv preprint arXiv:2208.03574
20224784.
Bartel, Andreas; Günther, Michael; Jacob, Birgit; Reis, Timo
Operator Splitting Based Dynamic Iteration for Linear Port-Hamiltonian Systems
arXiv preprint arXiv:2208.03574
20224783.
Sudhoff, Julia
Ordinal costs in multi-objective combinatorial optimization
Dissertation
Dissertation
Bergische Universität Wuppertal
20224782.
[german] Banerji, Amitabh; Dörschelln, Jennifer; Schwarz, D.
Organische Leuchtdioden im Chemieunterricht
Chemie in unserer Zeit, 52 (1) :34-41
20224781.
Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas; Nguyen, Tuan Anh
Overcoming the curse of dimensionality in the numerical approximation of backward stochastic differential equations
Journal of Numerical Mathematics
2022
Herausgeber: De Gruyter4780.
Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas
Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities
Foundations of Computational Mathematics, 22 (4) :905–966
2022
Herausgeber: Springer New York4779.
Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas
Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities
Foundations of Computational Mathematics, 22 (4) :905--966
2022
Herausgeber: Springer US New York4778.
Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas
Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities
Foundations of Computational Mathematics, 22 (4) :905–966
2022
Herausgeber: Springer New York4777.
Zang, Martin; Haussmann, Norman; Mease, Robin; Stroka, Steven; Clemens, Markus; Burkert, Amelie; Popp, Alexander; Schmülling, Benedikt
Personenschutz bei induktivem Laden von Fahrzeugbatterien -- Ansätze zur praktikablen Echtzeitbestimmung der magneto-quasistatischen Körperexposition
In Proff, Heike, Editor
Seite 173--194
Herausgeber: Springer Fachmedien Wiesbaden, Wiesbaden
2022
173--1944776.
Acu, Ana-Maria; Heilmann, Margareta; Raşa, Ioan; Seserman, Andra
Poisson approximation to the binomial distribution: extensions to the convergence of positive operators
20224775.
Amin Zargaran, Uwe Janoske
Prediction of the mixing efficiency in rotor-stator system for high viscous mixtures based on a combined Lagrangian particle approach with an Immersed-Boundary Method
September 20224774.
Progress in Industrial Mathematics at ECMI 2021
In Ehrhardt, Matthias and Günther, Michael, Editor aus Mathematics in Industry
Herausgeber: Springer Cham
2022ISBN: 978-3-031-11817-3
4773.
Progress in Industrial Mathematics at ECMI 2021
In Ehrhardt, Matthias and Günther, Michael, Editor aus Mathematics in Industry
Herausgeber: Springer Cham
2022ISBN: 978-3-031-11817-3
4772.
Progress in Industrial Mathematics at ECMI 2021
In Ehrhardt, Matthias and Günther, Michael, Editor aus Mathematics in Industry
Herausgeber: Springer Cham
2022ISBN: 978-3-031-11817-3
4771.
Ehrhardt, Matthias; Günther, Michael
Progress in Industrial Mathematics at ECMI 2021
20224770.
Kääpä, Alex; Kampert, Karl-Heinz; Mayotte, Eric
Propagation of extragalactic cosmic rays in the Galactic magnetic field
PoS, EPS-HEP2021 :088
20224769.
Ankirchner, Stefan; Kruse, Thomas; Löhr, Wolfgang; Urusov, Mikhail
Properties of the EMCEL scheme for approximating irregular diffusions
Journal of Mathematical Analysis and Applications, 509 (1) :125931
2022
Herausgeber: Academic Press