Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



2022

4742.

Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas; Nguyen, Tuan Anh
Overcoming the curse of dimensionality in the numerical approximation of backward stochastic differential equations
Journal of Numerical Mathematics
2022
Herausgeber: De Gruyter

4741.

Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas
Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities
Foundations of Computational Mathematics, 22 (4) :905–966
2022
Herausgeber: Springer New York

4740.

Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas
Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities
Foundations of Computational Mathematics, 22 (4) :905--966
2022
Herausgeber: Springer US New York

4739.

Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas
Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities
Foundations of Computational Mathematics, 22 (4) :905–966
2022
Herausgeber: Springer New York

4738.

Ballaschk, Frederic
Oxidations with Iodine(V) Compounds – From Stoichiometric Compounds to Catalysts
In Ishihara, Kazuaki and Muñiz, Kilian, Editor, Iodine Catalysis in Organic Synthesis
Seite 299–334
Herausgeber: Wiley
1 Edition
2022
299–334

4737.

Zang, Martin; Haussmann, Norman; Mease, Robin; Stroka, Steven; Clemens, Markus; Burkert, Amelie; Popp, Alexander; Schmülling, Benedikt
Personenschutz bei induktivem Laden von Fahrzeugbatterien -- Ansätze zur praktikablen Echtzeitbestimmung der magneto-quasistatischen Körperexposition
In Proff, Heike, Editor
Seite 173--194
Herausgeber: Springer Fachmedien Wiesbaden, Wiesbaden
2022
173--194

4736.

Acu, Ana-Maria; Heilmann, Margareta; Raşa, Ioan; Seserman, Andra
Poisson approximation to the binomial distribution: extensions to the convergence of positive operators
2022

4735.

Amin Zargaran, Uwe Janoske
Prediction of the mixing efficiency in rotor-stator system for high viscous mixtures based on a combined Lagrangian particle approach with an Immersed-Boundary Method
September 2022

4734.


Progress in Industrial Mathematics at ECMI 2021
In Ehrhardt, Matthias and Günther, Michael, Editor aus Mathematics in Industry
Herausgeber: Springer Cham
2022

ISBN: 978-3-031-11817-3

4733.


Progress in Industrial Mathematics at ECMI 2021
In Ehrhardt, Matthias and Günther, Michael, Editor aus Mathematics in Industry
Herausgeber: Springer Cham
2022

ISBN: 978-3-031-11817-3

4732.


Progress in Industrial Mathematics at ECMI 2021
In Ehrhardt, Matthias and Günther, Michael, Editor aus Mathematics in Industry
Herausgeber: Springer Cham
2022

ISBN: 978-3-031-11817-3

4731.

Ehrhardt, Matthias; Günther, Michael
Progress in Industrial Mathematics at ECMI 2021
2022

4730.

Kääpä, Alex; Kampert, Karl-Heinz; Mayotte, Eric
Propagation of extragalactic cosmic rays in the Galactic magnetic field
PoS, EPS-HEP2021 :088
2022

4729.

Ankirchner, Stefan; Kruse, Thomas; Löhr, Wolfgang; Urusov, Mikhail
Properties of the EMCEL scheme for approximating irregular diffusions
Journal of Mathematical Analysis and Applications, 509 (1) :125931
2022
Herausgeber: Academic Press

4728.

Ankirchner, Stefan; Kruse, Thomas; Löhr, Wolfgang; Urusov, Mikhail
Properties of the EMCEL scheme for approximating irregular diffusions
Journal of Mathematical Analysis and Applications, 509 (1) :125931
2022
Herausgeber: Academic Press

4727.

Ankirchner, Stefan; Kruse, Thomas; Löhr, Wolfgang; Urusov, Mikhail
Properties of the EMCEL scheme for approximating irregular diffusions
Journal of Mathematical Analysis and Applications, 509 (1) :125931
2022
Herausgeber: Academic Press

4726.

Haussmann, N.; Clemens, M.
Quantifizierung der Unsicherheit bei der Expositionsbestimmung des menschlichen Körpers durch niederfrequente Magnetfelder auf GPUs mit Monte-Carlo Simulationen
URSI e.V. Deutschland 2022 Kleinheubacher Tagung (KHB 2022)
Miltenberg, Germany
Herausgeber: Abstract accepted
2022

4725.

Kienitz, J.; McWalter, T. A.; Rudd, R.; Platen, E.
Quantization methods for stochastic differential equations
In Günther, Michael and Schilders, Wil, Editor aus Mathematics in Industry
Seite 299–329
Herausgeber: Springer Cham
2022
299–329

4724.

Kienitz, J.; McWalter, T. A.; Rudd, R.; Platen, E.
Quantization methods for stochastic differential equations
In Günther, Michael and Schilders, Wil, Editor aus Mathematics in Industry
Seite 299–329
Herausgeber: Springer Cham
2022
299–329

4723.

Addazi, A.; others
Quantum gravity phenomenology at the dawn of the multi-messenger era-A review
Prog. Part. Nucl. Phys., 125 :103948
2022

4722.


Reactions with Geminal Diazides: Long Known, Full of Surprises, and New Opportunities
Synthesis, 54 (20) :4447-4460
2022
Herausgeber: Thieme
ISSN: 0039-7881

4721.

Bannenberg, Marcus WFM; Ciccazzo, Angelo; Günther, Michael
Reduced order multirate schemes in industrial circuit simulation
Journal of Mathematics in Industry, 12 (1) :1--13
2022
Herausgeber: SpringerOpen

4720.

Bannenberg, Marcus WFM; Ciccazzo, Angelo; Günther, Michael
Reduced order multirate schemes in industrial circuit simulation
Journal of Mathematics in Industry, 12 (1) :12
2022
Herausgeber: Springer Verlag

4719.

Bannenberg, Marcus WFM; Ciccazzo, Angelo; Günther, Michael
Reduced order multirate schemes in industrial circuit simulation
Journal of Mathematics in Industry, 12 (1) :12
2022
Herausgeber: Springer Verlag

4718.

Ackermann, Julia; Kruse, Thomas; Urusov, Mikhail
Reducing Obizhaeva-Wang type trade execution problems to LQ stochastic control problems
arXiv preprint arXiv:2206.03772
2022