Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



2022

4842.

Ackermann, Julia; Kruse, Thomas; Overbeck, Ludger
Inhomogeneous affine Volterra processes
Stochastic Processes and their Applications, 150 :250–279
2022
Herausgeber: North-Holland

4841.

Ackermann, Julia; Kruse, Thomas; Overbeck, Ludger
Inhomogeneous affine Volterra processes
Stochastic Processes and their Applications, 150 :250--279
2022
Herausgeber: North-Holland

4840.

Ackermann, Julia; Kruse, Thomas; Overbeck, Ludger
Inhomogeneous affine Volterra processes
Stochastic Processes and their Applications, 150 :250–279
2022
Herausgeber: North-Holland

4839.

Burgmann, Sebastian; Krämer, Veronika; Rohde, Martin; Dues, Michael; Janoske, Uwe
Inner and outer flow of an adhering droplet in shear flow
International Journal of Multiphase Flow, 153 :104140
2022
ISSN: 0301-9322

4838.

Hosfeld, René; Jacob, Birgit; Schwenninger, Felix
Integral input-to-state stability of unbounded bilinear control systems
Math. Control Signals Systems, 34 (2) :273-295
2022

4837.

Schweitzer, Marcel
Integral representations for higher-order Fréchet derivatives of matrix functions: Quadrature algorithms and new results on the level-2 condition number
2022

4836.

Khosrawi-Rad, Bijan; Keller, Paul; Grogorick, Linda; Robra-Bissantz, Susanne
Introducing Vicky: A Pedagogical Conversational Agent for the Classification of Learning Styles
17th International Conference on Design Science Research in Information Systems and Technology (DESRIST)
St. Petersburg, FL, USA
2022

4835.

Tovar, Carmen Maria; Barnes, Ian; Bejan, Iustinian Gabriel; Wiesen, Peter
Kinetic study of the atmospheric oxidation of a series of epoxy compounds by OH radicals
Atmospheric Chemistry and Physics, 22 (10) :6989—7004
Mai 2022
ISSN: 1680-7324

4834.

Cardona, Alejandro L.; Gibilisco, Rodrigo G.; Rivela, Cynthia B.; Blanco, María B.; Patroescu-Klotz, Iulia; Illmann, Niklas; Wiesen, Peter; Teruel, Mariano A.
Kinetics, product distribution and atmospheric implications of the gas-phase oxidation of allyl sulfides by OH radicals
Chemosphere, 288 :132546
Februar 2022
ISSN: 00456535

4833.

Bolten, Matthias; Sturler, E. De; Hahn, C.
Krylov Subspace Recycling for Evolving Structures
Comput. Methods Appl. Mech. Engrg., 391 :114222
2022

4832.

Bolten, M.; Sturler, E. De; Hahn, C.
Krylov Subspace Recycling for Evolving Structures
Comput. Methods Appl. Mech. Engrg., 391 :114222
2022

4831.

Bolten, M.; De Sturler, E.; Hahn, C.
Krylov Subspace Recycling for Evolving Structures
Comput. Methods Appl. Mech. Engrg., 391 :114222
2022

4830.

Frommer, Andreas; Kahl, Karsten; Schweitzer, Marcel; Tsolakis, Manuel
Krylov subspace restarting for matrix Laplace transforms
2022

4829.

Krutz, Isabel; Zeller, Diana; Bohrmann-Linde, Claudia
Kursbuch Was brennt bei einer Kerze?. Eine Lerneinheit des Konzepts KriViNat
Herausgeber: Chemiedidaktik. Bergische Universität Wuppertal
2022
online

4828.

Kaiser, Jennifer; Zeller, Diana; Bohrmann-Linde, Claudia
Kursbuch zum Brausetablettenversuch. Eine Lerneinheit des Konzepts KriViNat
Herausgeber: Chemiedidaktik, Bergische Universität Wuppertal
2022
online

4827.

Bartel, Andreas; Ehrhardt, Matthias
Lagrangian instabilities in thermal convection with
2022

4826.

Bartel, Andreas; Ehrhardt, Matthias
Lagrangian instabilities in thermal convection with stable temperature profiles
Preprint IMACM
2022
Herausgeber: Bergische Universität Wuppertal

4825.

Bartel, Andreas; Ehrhardt, Matthias
Lagrangian instabilities in thermal convection with stable temperature profiles
Preprint IMACM
2022
Herausgeber: Bergische Universität Wuppertal

4824.

Bartel, Andreas; Ehrhardt, Matthias
Lagrangian instabilities in thermal convection with stable temperature profiles
arXiv preprint arXiv:2205.03856
April 2022

4823.

Bartel, Andreas; Ehrhardt, Matthias
Large-scale convective flow sustained by thermally active {L}agrangian tracers
Journal of Fluid Mechanics, 953 :A5
2022
Herausgeber: Cambridge University Press

4822.

Bartel, Andreas; Ehrhardt, Matthias
Large-scale convective flow sustained by thermally active Lagrangian tracers
Journal of Fluid Mechanics, 953 :A5
2022
Herausgeber: Cambridge University Press

4821.

Bartel, Andreas; Ehrhardt, Matthias
Large-scale convective flow sustained by thermally active Lagrangian tracers
Journal of Fluid Mechanics, 953 :A5
2022
Herausgeber: Cambridge University Press

4820.

Bartel, Andreas; Ehrhardt, Matthias
Large-scale convective flow sustained by thermally active Lagrangian tracers
Journal of Fluid Mechanics, 953 :A5
2022
Herausgeber: Cambridge University Press

4819.

[german] Tausch, Michael W.
LED statt Gasbrenner - Mehr Licht für nachhaltigen Chemieunterricht
Chemie in unserer Zeit, 56 (3/2022) :188–196
2022

4818.

Daners, Daniel; Glück, Jochen; Mui, Jonathan
Local uniform convergence and eventual positivity of solutions to biharmonic heat equations
Differential and Integral Equations, 9/10 :727-756
2022