Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



1986

152.

Jensen, Per; Spirko, Vladim{í}r; Bunker, Philip R.
A new Morse-oscillator based Hamiltonian for H\(_{3}\)\(^{+}\): Extension to H\(_{2}\)D\(^{+}\) and D\(_{2}\)H\(^{+}\)
Journal of Molecular Spectroscopy, 115 (2) :269-293
1986

151.

Jensen, Per; Spirko, Vladim{í}r; Bunker, Philip R.
A new Morse-oscillator based Hamiltonian for H\(_{3}\)\(^{+}\): Extension to H\(_{2}\)D\(^{+}\) and D\(_{2}\)H\(^{+}\)
Journal of Molecular Spectroscopy, 115 (2) :269-293
1986

150.

Jensen, Per; Spirko, Vladimír
A new Morse-oscillator based Hamiltonian for H3+: Calculation of line strengths
Journal of Molecular Spectroscopy, 118 (1) :208-231
1986

149.

Jensen, Per; Spirko, Vladimír; Bunker, Philip R.
A new Morse-oscillator based Hamiltonian for H3+: Extension to H2D+ and D2H+
Journal of Molecular Spectroscopy, 115 (2) :269-293
1986

148.

Adams, Warren P; Sherali, Hanif D
A tight linearization and an algorithm for zero-one quadratic programming problems
Management Science, 32 (10) :1274--1290
1986
Herausgeber: INFORMS

147.

Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
Ab initio rotation-vibration energies of HOC\(^{+}\) calculated using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 118 (1) :40-49
1986

146.

Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
Ab initio rotation-vibration energies of HOC+ calculated using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 118 (1) :40-49
1986

145.

Kraemer, Wolfgang P.; Roos, B. O.; Bunker, Philip R.; Jensen, Per
An ab initio calculation of the rotation-vibration energies of the state of CCH using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 120 (1) :236-238
1986

144.

Kraemer, Wolfgang P.; Roos, B. O.; Bunker, Philip R.; Jensen, Per
An ab initio calculation of the rotation-vibration energies of the state of CCH using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 120 (1) :236-238
1986

143.

Kraemer, Wolfgang P.; Roos, B. O.; Bunker, Philip R.; Jensen, Per
An ab initio calculation of the rotation-vibration energies of the state of CCH using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 120 (1) :236-238
1986

142.

Fink, Ewald H.; Kruse, H.; Ramsay, D. A.; Vervloet, M.
An electric quadrupole transition: the emission system of oxygen
Canadian Journal of Physics, 64 (3) :242-245
1986
Herausgeber: NRC Research Press Ottawa, Canada

141.

Fink, Ewald H.; Kruse, H.; Ramsay, D. A.; Vervloet, M.
An electric quadrupole transition: the emission system of oxygen
Canadian Journal of Physics, 64 (3) :242-245
1986
Herausgeber: NRC Research Press Ottawa, Canada

140.

Fink, Ewald H.; Kruse, H.; Ramsay, D. A.; Vervloet, M.
An electric quadrupole transition: the emission system of oxygen
Canadian Journal of Physics, 64 (3) :242-245
1986
Herausgeber: NRC Research Press Ottawa, Canada

139.

Jensen, Per; Winnewisser, Manfred
Prediction of higher inversion energy levels for isocyanamide H\(_{2}\)NNC
Collection of Czechoslovak Chemical Communications, 51 (7) :1373-1381
1986
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.

138.

Jensen, Per; Winnewisser, Manfred
Prediction of higher inversion energy levels for isocyanamide H\(_{2}\)NNC
Collection of Czechoslovak Chemical Communications, 51 (7) :1373-1381
1986
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.
1985

137.

Phillips, R.A.; Buenker, Robert J.; Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
An ab initio study of the rotation-vibration energy levels of GeH\(_{2}\) in the a\verb=~=\(^{3}\)B\(_{1}\) state
Chemical Physics Letters, 118 (1) :60-63
1985

136.

Spirko, Vladim{í}r; Jensen, Per; Bunker, Philip R.; Cejchan, A.
The development of a new Morse-oscillator based rotation-vibration Hamiltonian for H\(_{3}\)\(^{+}\)
Journal of Molecular Spectroscopy, 112 (1) :183-202
1985

135.

Winkler, R.
Path-following for two-point boundary value problems
, Seminarbericht 78 der Sektion MathematikBand78
Humboldt-Universität zu Berlin
1985

134.

Kling, H.-W.; Hartkamp, H.; Buchholz, N.
Matrixunabhängige kontinuierliche Dampfraum-Gas-Chromatographie
Fresenius' Journal of Analytical Chemistry, 320 (4) :341--346
1985

133.

Phillips, R.A.; Buenker, Robert J.; Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
An ab initio study of the rotation-vibration energy levels of GeH2 in the a~3B1 state
Chemical Physics Letters, 118 (1) :60-63
1985

132.

Lamour, R.; Hanke, M.; Winkler, R.
The program system ‘RWA’ (version 2) for the solution of TPBVP - fundamentals and algorithms
, Seminarbericht 67 der Sektion MathematikBand67
Humboldt-Universität zu Berlin
1985

131.

Phillips, R.A.; Buenker, Robert J.; Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
An ab initio study of the rotation-vibration energy levels of GeH\(_{2}\) in the a\verb=~=\(^{3}\)B\(_{1}\) state
Chemical Physics Letters, 118 (1) :60-63
1985

130.

Tausch, Michael W.
Aktivierungsenergie - was ist das?
Praxis der Naturwissenschaften (Chemie), 34 :33
1985

129.

Holstein, K. J.; Fink, Ewald H.; Wildt, Jürgen; Zabel, Friedhelm
A~2A' → X~2A" emission spectrum of the HS2 radical
Chemical Physics Letters, 113 (1) :1-7
1985

128.

Holstein, K. J.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
A\verb=~=\(^{2}\)A' → X\verb=~=\(^{2}\)A'' emission spectrum of the HS\(_{2}\) radical
Chemical Physics Letters, 113 (1) :1-7
1985

Weitere Infos über #UniWuppertal: