Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



1994

495.

Kielau, Gerald; Maißer, P
Simulation von Fahren gesteuerter Bobschlitten
Zeitschrift für angewandte Mathematik und Mechanik, 74 (9) :434--435
1994

494.

Günther, Michael; Rentrop, Peter
Suitable one-step methods for quasilinear-implicit ode's
Herausgeber: Mathematisches Institut und Institut für Informatik der Technischen~…
1994

493.

Auwera, J. Vander; Holland, J. K.; Jensen, Per; Johns, John W. C.
The \(\nu\)\(_{6}\) band system of C\(_{3}\)O\(_{2}\) near 540 cm\(^{-1}\)
Journal of Molecular Spectroscopy, 163 (2) :529-540
1994
Herausgeber: Academic Press

492.

Auwera, J. Vander; Holland, J. K.; Jensen, Per; Johns, John W. C.
The \(\nu\)\(_{6}\) band system of C\(_{3}\)O\(_{2}\) near 540 cm\(^{-1}\)
Journal of Molecular Spectroscopy, 163 (2) :529-540
1994
Herausgeber: Academic Press

491.

Breidohr, R.; Shestakov, Oleg; Fink, Ewald H.
The a \(^{3}\)\(\Sigma\)\(^{+}\) (a\(_{1}\) 1) → X \(^{1}\)\(\Sigma\)\(^{+}\) (X 0\(^{+}\)) Transitions of BiP, BiAs, and BiSb
Journal of Molecular Spectroscopy, 168 (1) :126-135
1994
Herausgeber: Academic Press

490.

Breidohr, R.; Shestakov, Oleg; Fink, Ewald H.
The a \(^{3}\)\(\Sigma\)\(^{+}\) (a\(_{1}\) 1) → X \(^{1}\)\(\Sigma\)\(^{+}\) (X 0\(^{+}\)) Transitions of BiP, BiAs, and BiSb
Journal of Molecular Spectroscopy, 168 (1) :126-135
1994
Herausgeber: Academic Press

489.

Breidohr, R.; Setzer, Klaus-Dieter; Shestakov, Oleg; Fink, Ewald H.; Zyrnicki, W.
The a \(^{3}\)\(\Sigma\)\(_{u}\)\(^{+}\) (a\(_{1}\) 1\(_{u}\)) → X \(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\) (X 0\(_{g}\)\(^{+}\)) Transition of Bi\(_{2}\)
Journal of Molecular Spectroscopy, 166 (2) :251-263
1994
Herausgeber: Academic Press

488.

Breidohr, R.; Setzer, Klaus-Dieter; Shestakov, Oleg; Fink, Ewald H.; Zyrnicki, W.
The a \(^{3}\)\(\Sigma\)\(_{u}\)\(^{+}\) (a\(_{1}\) 1\(_{u}\)) → X \(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\) (X 0\(_{g}\)\(^{+}\)) Transition of Bi\(_{2}\)
Journal of Molecular Spectroscopy, 166 (2) :251-263
1994
Herausgeber: Academic Press

487.

Breidohr, R.; Shestakov, Oleg; Fink, Ewald H.
The a \(^{3}\)\(\Sigma\)\(_{u}\)\(^{+}\)(a\(_{1}\) 1\(_{u}\)) → X \(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\) (X 0\(_{g}\)\(^{+}\)) transition of Sb\(_{2}\)
Chemical Physics Letters, 218 (1-2) :13-16
1994

486.

Breidohr, R.; Shestakov, Oleg; Fink, Ewald H.
The a \(^{3}\)\(\Sigma\)\(_{u}\)\(^{+}\)(a\(_{1}\) 1\(_{u}\)) → X \(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\) (X 0\(_{g}\)\(^{+}\)) transition of Sb\(_{2}\)
Chemical Physics Letters, 218 (1-2) :13-16
1994

485.

Breidohr, R.; Setzer, Klaus-Dieter; Shestakov, Oleg; Fink, Ewald H.; Zyrnicki, W.
The a 3Σu+ (a1 1u) → X 1Σg+ (X 0g+) Transition of Bi2
Journal of Molecular Spectroscopy, 166 (2) :251-263
1994
Herausgeber: Academic Press

484.

Breidohr, R.; Shestakov, Oleg; Fink, Ewald H.
The a 3Σu+(a1 1u) → X 1Σg+ (X 0g+) transition of Sb2
Chemical Physics Letters, 218 (1-2) :13-16
1994

483.

Breidohr, R.; Shestakov, Oleg; Fink, Ewald H.
The a 3Σ+ (a1 1) → X 1Σ+ (X 0+) Transitions of BiP, BiAs, and BiSb
Journal of Molecular Spectroscopy, 168 (1) :126-135
1994
Herausgeber: Academic Press

482.

Shestakov, Oleg; Fink, Ewald H.
The a\(^{1}\)\(\Delta\)(a2) state of BiF
Chemical Physics Letters, 229 (3) :273-278
1994

481.

Shestakov, Oleg; Fink, Ewald H.
The a\(^{1}\)\(\Delta\)(a2) state of BiF
Chemical Physics Letters, 229 (3) :273-278
1994

480.

Shestakov, Oleg; Fink, Ewald H.
The a1Δ(a2) state of BiF
Chemical Physics Letters, 229 (3) :273-278
1994

479.

Tashkun, Sergey A.; Jensen, Per
The low-energy part of the potential function for the electronic ground state of NO\(_{2}\) derived from experiment
Journal of Molecular Spectroscopy, 165 (1) :173-184
1994
Herausgeber: Academic Press

478.

Tashkun, Sergey A.; Jensen, Per
The low-energy part of the potential function for the electronic ground state of NO\(_{2}\) derived from experiment
Journal of Molecular Spectroscopy, 165 (1) :173-184
1994
Herausgeber: Academic Press

477.

Tashkun, Sergey A.; Jensen, Per
The low-energy part of the potential function for the electronic ground state of NO2 derived from experiment
Journal of Molecular Spectroscopy, 165 (1) :173-184
1994
Herausgeber: Academic Press

476.

Jensen, Per; Bunker, Philip R.
The Molecular Symmetry Group for Molecules in High Angular Momentum States
Journal of Molecular Spectroscopy, 164 (1) :315-317
1994
Herausgeber: Academic Press

475.

Jensen, Per; Bunker, Philip R.
The Molecular Symmetry Group for Molecules in High Angular Momentum States
Journal of Molecular Spectroscopy, 164 (1) :315-317
1994
Herausgeber: Academic Press

474.

Jensen, Per; Bunker, Philip R.
The Molecular Symmetry Group for Molecules in High Angular Momentum States
Journal of Molecular Spectroscopy, 164 (1) :315-317
1994
Herausgeber: Academic Press

473.

Bednarek, G.; Wayne, R.P.; Wildt, J{ü}rgen; Fink, E.H.
The yield of O\(_{2}\)(b \(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\), v=0) produced by quenching of O\(_{2}\)(A \(^{3}\)\(\Sigma\)\(_{u}\)\(^{+}\), v=8) by O\(_{2}\)
Chemical Physics, 185 (2) :251-261
1994

472.

Bednarek, G.; Wayne, R.P.; Wildt, J{ü}rgen; Fink, E.H.
The yield of O\(_{2}\)(b \(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\), v=0) produced by quenching of O\(_{2}\)(A \(^{3}\)\(\Sigma\)\(_{u}\)\(^{+}\), v=8) by O\(_{2}\)
Chemical Physics, 185 (2) :251-261
1994

471.

Bednarek, G.; Wayne, R.P.; Wildt, Jürgen; Fink, E.H.
The yield of O2(b 1Σg+, v=0) produced by quenching of O2(A 3Σu+, v=8) by O2
Chemical Physics, 185 (2) :251-261
1994