Thermal Coupling

The performance of high-tech circuitry such as processors and power devices also largely depends on the thermal level. Semiconductor devices loss their ability of fast switching if the temperature increases to much. Furthermore after a critical temperature is reached the device will be destroyed. Therefore monitoring temperature and regulating cooling are important issues.
In our research, we set up simulation models for semiconductor equations and integrated circuits, which incorporate transient temperature changes in the device and heat conduction between devices. That is an electric network as well as semiconductor equations have to be equipped with an appropriate model for power transfer and heat conduction.
Since this multiphysical problem of coupled electric networks and heat conduction exhibits widely separated time scales, not only the model but also the numerical algorithms need be design to enable fast simulations. Multirate cosimulation is an good choice if the coupling is appropriately set up. Please see also: (Coupled DAEs).
Publications
5392.
Ehrhardt, Matthias; Günther, Michael; Striebel, Michael
Geometric Numerical Integration Structure-Preserving Algorithms for Lattice QCD Simulations5391.
High order tensor product interpolation in the Combination Technique
preprint, 14 :255390.
Hendricks, Christian; Ehrhardt, Matthias; Günther, Michael
Hybrid finite difference/pseudospectral methods for stochastic volatility models
19th European Conference on Mathematics for Industry, Seite 3885389.
Ehrhardt, Matthias; Csomós, Petra; Faragó, István; others
Invited Papers5388.
Günther, Michael
Lab Exercises for Numerical Analysis and Simulation I: ODEs5387.
Ehrhardt, Matthias; Günther, Michael
Mathematical Modelling of Dengue Fever Epidemics5386.
Ehrhardt, Matthias
Mathematical Modelling of Monkeypox Epidemics5385.
Ehrhardt, Matthias; Günther, Michael
Mathematical Study of Grossman's model of investment in health capital5384.
Bartel, PD Dr A
Mathematische Modellierung in Anwendungen5383.
Model Order Reduction Techniques for Basket Option Pricing5382.
Ehrhardt, Matthias; Günther, Michael
Modelling Stochastic Correlations in Finance5381.
Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit; Maten, Jan
Modelling, Analysis and Simulation with Port-Hamiltonian Systems5380.
Maten, E Jan W; Ehrhardt, Matthias
MS40: Computational methods for finance and energy markets
19th European Conference on Mathematics for Industry, Seite 3775379.
Putek, Piotr; PAPLICKI, Piotr; Pulch, Roland; Maten, Jan; Günther, Michael; PA{\L}KA, Ryszard
NONLINEAR MULTIOBJECTIVE TOPOLOGY OPTIMIZATION AND MULTIPHYSICS ANALYSIS OF A PERMANENT-MAGNET EXCITED SYNCHRONOUS MACHINE5378.
Günther, Michael; Wandelt, Dipl Math Mich{\`e}le
Numerical Analysis and Simulation I: ODEs5377.
Ehrhardt, Matthias; Günther, Michael
Numerical Evaluation of Complex Logarithms in the Cox-Ingersoll-Ross Model5376.
Ehrhardt, Matthias; Günther, Michael
Numerical Pricing of Game (Israeli) Options5375.
Ehrhardt, Matthias; Farkas, Bálint; Günther, Michael; Jacob, Birgit
Operator Splitting and Multirate Schemes5374.
Vázquez, C
PDE modeling and numerical methods for swing option pricing in electricity markets
19th European Conference on Mathematics for Industry, Seite 3905373.
Ehrhardt, Matthias
Positive Schemes for Air Pollution Problems, Optimal Location of Industrial Enterprises and Optimization of their Emissions5372.
Ehrhardt, Matthias; Vázquez, Carlos
Pricing swing options in electricity markets with two stochastic factors: PIDE modeling and numerical solution
3rd International Conference on Computational Finance (ICCF2019), Seite 895371.
Putek, PA; Ter Maten, EJW
Reliability-based Low Torque Ripple Design of Permanent Magnet Machine5370.
Knechtli, F; Striebel, M; Wandelt, M
Symmetric \& Volume Preserving Projection Schemes5369.
Putek, Piotr; Günther, Michael
Topology Optimization and Analysis of a PM synchronous Machine for Electrical Automobiles5368.
Ehrhardt, Matthias; Günther, Michael
Vorhersage-Modelle am Beispiel des Corona-Virus COVID-19