Semiconductor
Semiconductor devices are solid state bodies, whose electrical conductivity strongly depends on the temperature and other internal properties like the so-called doping. Depending on the temperature or other internal settigns, they can be regarded as insulator or conductor. (Physically speaken: Semiconductor materials have a band gap between.. and .. electron Volt)
This property makes them extremely useful in electronics, since this property can be easily employed to use them as switches. On nowadays computerchips and prozessors, millions of semiconductor devices (especially transistors) are included in an electronic circuit. In order to use common circuit simulation tools to simualte circuits containing those devices, semiconductor devices are often reflected by compact models - subcircuits of basic elements like resistors, capacitors, inductors and current/voltage sources. Those compact models shoul rebuild the input/output behaviour of the semiconductor device.
Ongoing miniaturization and the step from miro- to nanotechnology, however, leads to more powerful prozessors and chips, since higher packing density can be achieved. On the other hand, this higher packing density and miniaturization of the devices makes parasitic effects like heating predominant. Incorporation of those effects into compact models results in large compact models to describe a single semiconductor device. This makes it desireable to include more exact distributed device models - device models based on partial differential equations - into circuit simulation.
Moreover, smaller devices are driven by smaller signals, what makes them more energy efficient. On the other hand this results in a larger noise/signal ratio, what makes inclusion of non-deterministic effects into device models interesting. All in all, this leads to the following recent question in semiconductor/circuit modelling and simulation:
- Thermal effects in semiconductor devices
- Noise in semiconductor devices (SDEs)
- Quantum Effects in semiconductor devices
- Electro-thermal coupling of optoelectronic semiconductor devices with electric circuits
- Efficient Co-Simulation of circuit/semiconductor problems (Dynamic Iteration schemes)
Former and ongoing projects
Cooperations
- Vittorio Romano, Università degli studi di Catania, Italy
- Giuseppe Ali, Universitá della Calabria, Italy
- Ansgar Jüngel, TU Vienna, Austria
- Pina Milisic, University of Zagreb, Croatia
Open subjects for theses
- Master Thesis: Two-dimensional thermal-electric simulation of semiconductor MOSFET-devices (M.Brunk)
Publications
- 1987
202.
Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.; Beardsworth, R.
Calculated rotation-vibration energies for HOC\(^{+}\)
Journal of Molecular Spectroscopy, 121 (2) :450-452
1987201.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.
High-resolution study of the emission system of \(^{80}\)SeO
Journal of Molecular Spectroscopy, 125 (1) :66-75
1987200.
Fink, Ewald H.; Kruse, H.; Ramsay, D. A.; Wang, Ding Chang
High resolution studies of the b\(^{1}\)\(\Sigma\)\(^{+}\) - X\(^{3}\)\(\Sigma\) emission system of SeS
Molecular Physics, 60 (2) :277-290
1987199.
Franik, R.; Tausch, Michael W.; Autorenteam
KLAUSUR- UND ABITURTRAINING CHEMIE, Aufgabensammlung mit Lösungen und weiterführenden Informationen für die S II, 7 Bände
Herausgeber: Aulis Deubner\&Co KG, Köln
1987198.
[german] Tausch, Michael W.
Photochemische cis-trans Isomerisierungen
Der mathematische und naturwissenschaftliche Unterricht (MNU), 40 :92
1987197.
Tausch, Michael W.; Fischer, W.; Glöckner, W.; Köhler-Degner, M.; Nöding, S.; Wolf, H.
STOFF UND FORMEL - Chemiebuch für Gymnasien, S I, 291 Seiten
Herausgeber: C. C. Buchner, Bamberg
1987196.
Tausch, Michael W.; Fischer, W.; Glöckner, W.; Köhler-Degner, M.; Nöding, S.; Wolf, H.
STOFF UND FORMEL - Chemiebuch für Gymnasien; Ausgabe NRW, S I, 291 Seiten
Herausgeber: C. C. Buchner, Bamberg
1987195.
Tausch, Michael W.; Fischer, W.; Glöckner, W.; Köhler-Degner, M.; Nöding, S.; Wolf, H.
STOFF UND FORMEL - Lehrerbände mit didaktischen Hinweisen und Lösungen der Aufgaben zu STOFF UND FORMEL - Chemiebuch für Gymnasien und Ausgabe NRW
Herausgeber: C. C. Buchner, Bamberg
1987194.
Fink, Ewald H.; Kruse, H.; Ramsay, D. A.; Wang, Ding Chang
High resolution studies of the b\(^{1}\)\(\Sigma\)\(^{+}\) - X\(^{3}\)\(\Sigma\) emission system of SeS
Molecular Physics, 60 (2) :277-290
1987193.
Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.; Beardsworth, R.
Calculated rotation-vibration energies for HOC+
Journal of Molecular Spectroscopy, 121 (2) :450-452
1987192.
Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.; Beardsworth, R.
Calculated rotation-vibration energies for HOC\(^{+}\)
Journal of Molecular Spectroscopy, 121 (2) :450-452
1987191.
Spirko, Vladim{í}r; Cejchan, A.; Jensen, Per
A new Morse-oscillator based Hamiltonian for H\(_{3}\)\(^{+}\): Explicit expressions for some vibrational matrix elements
Journal of Molecular Spectroscopy, 124 (2) :430-436
1987190.
Heilmann, Margareta
Approximation auf [0, ∞) durch das Verfahren der Operatoren vom Baskakov-Durrmeyer Typ
Universität Dortmund
1987189.
McLean, A. D.; Bunker, Philip R.; Escribano, R. M.; Jensen, Per
An ab initio calculation of ν1 and ν3 for triplet methylene (X~3B1 CH2) and the determination of the vibrationless singlet-triplet splitting Te (a~1A1)
The Journal of Chemical Physics, 87 (4) :2166-2169
1987188.
Jensen, Per; Bunker, Philip R.; McLean, A. D.
An ab initio calculation of the rotation-vibration energies of singlet and triplet NH2+ using the morbid Hamiltonian
Chemical Physics Letters, 141 (1-2) :53-57
1987187.
Jensen, Per; Bunker, Philip R.; McLean, A. D.
An ab initio calculation of the rotation-vibration energies of singlet and triplet NH\(_{2}\)\(^{+}\) using the morbid Hamiltonian
Chemical Physics Letters, 141 (1-2) :53-57
1987186.
Jensen, Per; Bunker, Philip R.; McLean, A. D.
An ab initio calculation of the rotation-vibration energies of singlet and triplet NH\(_{2}\)\(^{+}\) using the morbid Hamiltonian
Chemical Physics Letters, 141 (1-2) :53-57
1987185.
McLean, A. D.; Bunker, Philip R.; Escribano, R. M.; Jensen, Per
An ab initio calculation of \(\nu\)\(_{1}\) and \(\nu\)\(_{3}\) for triplet methylene (X\verb=~=\(^{3}\)B\(_{1}\) CH\(_{2}\)) and the determination of the vibrationless singlet-triplet splitting Te (a\verb=~=\(^{1}\)A\(_{1}\))
The Journal of Chemical Physics, 87 (4) :2166-2169
1987184.
McLean, A. D.; Bunker, Philip R.; Escribano, R. M.; Jensen, Per
An ab initio calculation of \(\nu\)\(_{1}\) and \(\nu\)\(_{3}\) for triplet methylene (X\verb=~=\(^{3}\)B\(_{1}\) CH\(_{2}\)) and the determination of the vibrationless singlet-triplet splitting Te (a\verb=~=\(^{1}\)A\(_{1}\))
The Journal of Chemical Physics, 87 (4) :2166-2169
1987183.
Spirko, Vladimír; Cejchan, A.; Jensen, Per
A new Morse-oscillator based Hamiltonian for H3+: Explicit expressions for some vibrational matrix elements
Journal of Molecular Spectroscopy, 124 (2) :430-436
1987182.
Spirko, Vladim{í}r; Cejchan, A.; Jensen, Per
A new Morse-oscillator based Hamiltonian for H\(_{3}\)\(^{+}\): Explicit expressions for some vibrational matrix elements
Journal of Molecular Spectroscopy, 124 (2) :430-436
1987181.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.
High-resolution study of the emission system of 80SeO
Journal of Molecular Spectroscopy, 125 (1) :66-75
1987- 1986
180.
Fink, Ewald H.; Kruse, H.; Ramsay, D. A.
The high-resolution emission spectrum of S\(_{2}\) in the near infrared: The b\(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\) - X\(^{3}\)\(\Sigma\)\(_{g}\)\(^{-}\) system
Journal of Molecular Spectroscopy, 119 (2) :377-387
1986179.
Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
Rotation-vibration energy levels of H2O and C3 calculated using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 118 (1) :50-63
1986178.
Jensen, Per; Johns, John W. C.
The infrared spectrum of carbon suboxide in the ν6 fundamental region: Experimental observation and semirigid bender analysis
Journal of Molecular Spectroscopy, 118 (1) :248-266
1986