Computational Magnetics
Many electro-technical devices such as e.g. printed circuit boards, electrical drives and antenna systems can be simulated on the basis of electrical circuits. However, the increasing frequencies and the decreasing size force designers to account for wave propagation effects, eddy-current effects, ferromagnetic saturation and hysteresis. For wave propagation effects and eddy-current effects, the results of stand-alone field simulation can be represented by an order-reduced equivalent model, which is then inserted in the overall circuit model. The representation of field-dependent nonlinearities and hysteresis effects, however, is not straightforward.

2D Simulation of a Transformer
The coupled field and circuit simulation becomes troublesome when a large number of time steps is required. This occurs when e.g. simulating an electrical drive where the machine requires 10 periods of 50 Hz to reach nominal speed whereas the switching of the Insulated Gate Bipolar Transistors in the frequency converter switches at 20 kHz, necessitating a time steps in the order of a microsecond to be used in the simulation. Since the field model consists typically of a few million degrees of freedom, all those unknowns have to be solved in every time step. Fortunately, the relevant time constants in electrical-energy converter are in the range 50 Hz. Hence the field model does not have to be time-stepped at the same rate as the circuit model, in which fast switches are present. The use of adaptive multirate time-integration schemes can reduce the numerical complexity of the problem substantially.
Research Questions
- Efficiency of the time-integration for field devices in pulsed circuits (multirate, dynamic iteration)
- DAE-index of the coupled system
- Existence and Uniqueness of the solution
Cooperation
- Herbert De Gersem, Katholieke Universiteit Leuven
- Markus Clemens, Bergische Universität Wuppertal
- Sascha Baumanns, Universität zu Köln
Former and ongoing projects
Publications
- 2016
3417.
Teng, Long; Ehrhardt, Matthias; Günther, Michael
Modelling stochastic correlation with modified Ornstein-Uhlenbeck process
Progress in Industrial Mathematics at ECMI 2014, Seite 113–120
Springer Heidelberg
Herausgeber: Springer Cham
20163416.
Hoffmann, Heiko; Tausch, Michael W.
Modellreaktionen mit Sonnenlicht oder Taschenlampe
Nachrichten aus der Chemie, 64 (11) :1090--1093
2016
Herausgeber: Wiley3415.
Kossaczk{\'{y}}, I.; Ehrhardt, M.; Günther, M.
Modifications of the {PCPT} method for {HJB} equations
Herausgeber: Author(s)
20163414.
Modifications of the PCPT method for HJB equations
, AIP Conference ProceedingsBand1773, Seite 030002
AIP Publishing LLC
20163413.
Kossaczkỳ, I; Ehrhardt, Matthias; Günther, Michael
Modifications of the PCPT method for HJB equations
, 8th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’16Band1773, Seite 030002
Herausgeber: American Institute of Physics
20163412.
Kossaczkỳ, I; Ehrhardt, Matthias; Günther, Michael
Modifications of the PCPT method for HJB equations
, 8th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’16Band1773, Seite 030002
Herausgeber: American Institute of Physics
20163411.
Kossaczkỳ, I; Ehrhardt, Matthias; Günther, Michael
Modifications of the PCPT method for HJB equations
, 8th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’16Band1773, Seite 030002
Herausgeber: American Institute of Physics
20163410.
Schweitzer, Marcel
Monotone convergence of the extended Krylov subspace method for Laplace-Stieltjes functions of Hermitian positive definite matrices
Linear Algebra Appl., 507 :486-498
20163409.
Schweitzer, Marcel
Monotone convergence of the extended Krylov subspace method for Laplace-Stieltjes functions of Hermitian positive definite matrices
Linear Algebra Appl., 507 :486-498
20163408.
Schweitzer, Marcel
Monotone convergence of the extended Krylov subspace method for Laplace-Stieltjes functions of Hermitian positive definite matrices
Linear Algebra Appl., 507 :486-498
20163407.
Knechtli, Francesco; Günther, Michael; Peardon, Michael
Monte Carlo methods
aus SpringerBriefs in Physics
Seite 35–53
Herausgeber: Springer Netherlands
2016
35–533406.
Knechtli, Francesco; Günther, Michael; Peardon, Michael
Monte Carlo methods
aus SpringerBriefs in Physics
Seite 35–53
Herausgeber: Springer Netherlands
2016
35–533405.
Frobel, Dominique-Jacqueline
Moose und Flechten an ausgewählten Plätzen im Stadtgebiet von Wuppertal
20163404.
Bolten, Matthias; Kahl, K.; Sokolović, S.
Multigrid methods for Tensor structured Markov chains with low rank approximation
SIAM J. Sci. Comput., 38 (2) :A649-A667
20163403.
Bolten, M.; Kahl, K.; Sokolović, S.
Multigrid methods for Tensor structured Markov chains with low rank approximation
SIAM J. Sci. Comput., 38 (2) :A649-A667
20163402.
Bolten, M.; Kahl, K.; Sokolović, S.
Multigrid methods for Tensor structured Markov chains with low rank approximation
SIAM J. Sci. Comput., 38 (2) :A649--A667
20163401.
Günther, Michael; Hachtel, Christoph; Sandu, Adrian
Multirate {GARK} Schemes for Multiphysics Problems
Scientific Computing in Electrical Engineering
Seite 115--121
Herausgeber: Springer International Publishing
2016
115--1213400.
Hachtel, Christoph; Kerler-Back, Johanna; Bartel, Andreas; Günther, Michael; Stykel, Tatjana
Multirate DAE/ODE-Simulation and Model Order Reduction for Coupled Circuit-Field Systems
20163399.
Günther, Michael; Hachtel, Christoph; Sandu, Adrian
Multirate GARK schemes for multiphysics problems
In Bartel, Andreas and Clemens, Markus and Günther, Michael and ter Maten, E. Jan W., Editor, Scientific Computing in Electrical Engineering: SCEE 2014, Wuppertal, Germany, July 2014ausMathematics in Industry, Seite 115–121
In Bartel, Andreas and Clemens, Markus and Günther, Michael and ter Maten, E. Jan W., Editor
Herausgeber: Springer Cham
20163398.
Günther, Michael; Hachtel, Christoph; Sandu, Adrian
Multirate GARK schemes for multiphysics problems
In Bartel, Andreas and Clemens, Markus and Günther, Michael and ter Maten, E. Jan W., Editor, Scientific Computing in Electrical Engineering: SCEE 2014, Wuppertal, Germany, July 2014ausMathematics in Industry, Seite 115–121
In Bartel, Andreas and Clemens, Markus and Günther, Michael and ter Maten, E. Jan W., Editor
Herausgeber: Springer Cham
20163397.
Bartel, Andreas; Günther, Michael; Hachtel, Christoph; Sandu, Adrian
Multirate GARK schemes for multiphysics problems
:115--121
20163396.
Günther, Michael; Sandu, Adrian
Multirate generalized additive Runge Kutta methods
Numerische Mathematik, 133 (3) :497–524
2016
Herausgeber: Springer New York3395.
Günther, Michael; Sandu, Adrian
Multirate generalized additive Runge Kutta methods
Numerische Mathematik, 133 (3) :497–524
2016
Herausgeber: Springer New York3394.
Günther, Michael; Sandu, Adrian
Multirate generalized additive Runge Kutta methods
Numerische Mathematik, 133 (3) :497--524
August 2016
Herausgeber: Springer Berlin Heidelberg3393.
Maten, E Jan W; Putek, Piotr A; Günther, Michael; Pulch, Roland; Tischendorf, Caren; Strohm, Christian; Schoenmaker, Wim; Meuris, Peter; Smedt, Bart De; Benner, Peter; Feng, Lihong; Banagaaya, Nicodemus; Yue, Yao; Janssen, Rick; Dohmen, Jos J; Tasic, Bratislav; Deleu, Frederik; Gillon, Renaud; Wieers, Aarnout; Brachtendorf, Hans-Georg; Bittner, Kai; Kratochvíl, Tomáš; Petřzela, Jiří; Sotner, Roman; Götthans, Tomáš; Dřínovský, Jiří; Schöps, Sebastian; Guerra, David J Duque; Casper, Thorben; Gersem, Herbert De; Römer, Ulrich; Reynier, Pascal; Barroul, Patrice; Masliah, Denis; Rousseau, Benoît
Nanoelectronic COupled problems solutions - nanoCOPS: modelling, multirate, model order reduction, uncertainty quantification, fast fault simulation
Journal of Mathematics in Industry, 7 (1) :1–19
2016
Herausgeber: Springer Verlag