Applied and Computational Mathematics (ACM)

Computational Magnetics

Many electro-technical devices such as e.g. printed circuit boards, electrical drives and antenna systems can be simulated on the basis of electrical circuits. However, the increasing frequencies and the decreasing size force designers to account for wave propagation effects, eddy-current effects, ferromagnetic saturation and hysteresis. For wave propagation effects and eddy-current effects, the results of stand-alone field simulation can be represented by an order-reduced equivalent model, which is then inserted in the overall circuit model. The representation of field-dependent nonlinearities and hysteresis effects, however, is not straightforward.

2D Simulation of a Transformer

2D Simulation of a Transformer

The coupled field and circuit simulation becomes troublesome when a large number of time steps is required. This occurs when e.g. simulating an electrical drive where the machine requires 10 periods of 50 Hz to reach nominal speed whereas the switching of the Insulated Gate Bipolar Transistors in the frequency converter switches at 20 kHz, necessitating a time steps in the order of a microsecond to be used in the simulation. Since the field model consists typically of a few million degrees of freedom, all those unknowns have to be solved in every time step. Fortunately, the relevant time constants in electrical-energy converter are in the range 50 Hz. Hence the field model does not have to be time-stepped at the same rate as the circuit model, in which fast switches are present. The use of adaptive multirate time-integration schemes can reduce the numerical complexity of the problem substantially.

Research Questions

Cooperation

Former and ongoing projects

Publications



2016

3417.

Teng, Long; Ehrhardt, Matthias; Günther, Michael
Modelling stochastic correlation with modified Ornstein-Uhlenbeck process
Progress in Industrial Mathematics at ECMI 2014, Seite 113–120
Springer Heidelberg
Herausgeber: Springer Cham
2016

3416.

Hoffmann, Heiko; Tausch, Michael W.
Modellreaktionen mit Sonnenlicht oder Taschenlampe
Nachrichten aus der Chemie, 64 (11) :1090--1093
2016
Herausgeber: Wiley

3415.

Kossaczk{\'{y}}, I.; Ehrhardt, M.; Günther, M.
Modifications of the {PCPT} method for {HJB} equations
Herausgeber: Author(s)
2016

3414.


Modifications of the PCPT method for HJB equations
, AIP Conference ProceedingsBand1773, Seite 030002
AIP Publishing LLC
2016

3413.

Kossaczkỳ, I; Ehrhardt, Matthias; Günther, Michael
Modifications of the PCPT method for HJB equations
, 8th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’16Band1773, Seite 030002
Herausgeber: American Institute of Physics
2016

3412.

Kossaczkỳ, I; Ehrhardt, Matthias; Günther, Michael
Modifications of the PCPT method for HJB equations
, 8th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’16Band1773, Seite 030002
Herausgeber: American Institute of Physics
2016

3411.

Kossaczkỳ, I; Ehrhardt, Matthias; Günther, Michael
Modifications of the PCPT method for HJB equations
, 8th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’16Band1773, Seite 030002
Herausgeber: American Institute of Physics
2016

3410.

Schweitzer, Marcel
Monotone convergence of the extended Krylov subspace method for Laplace-Stieltjes functions of Hermitian positive definite matrices
Linear Algebra Appl., 507 :486-498
2016

3409.

Schweitzer, Marcel
Monotone convergence of the extended Krylov subspace method for Laplace-Stieltjes functions of Hermitian positive definite matrices
Linear Algebra Appl., 507 :486-498
2016

3408.

Schweitzer, Marcel
Monotone convergence of the extended Krylov subspace method for Laplace-Stieltjes functions of Hermitian positive definite matrices
Linear Algebra Appl., 507 :486-498
2016

3407.

Knechtli, Francesco; Günther, Michael; Peardon, Michael
Monte Carlo methods
aus SpringerBriefs in Physics
Seite 35–53
Herausgeber: Springer Netherlands
2016
35–53

3406.

Knechtli, Francesco; Günther, Michael; Peardon, Michael
Monte Carlo methods
aus SpringerBriefs in Physics
Seite 35–53
Herausgeber: Springer Netherlands
2016
35–53

3405.

Frobel, Dominique-Jacqueline
Moose und Flechten an ausgewählten Plätzen im Stadtgebiet von Wuppertal
2016

3404.

Bolten, Matthias; Kahl, K.; Sokolović, S.
Multigrid methods for Tensor structured Markov chains with low rank approximation
SIAM J. Sci. Comput., 38 (2) :A649-A667
2016

3403.

Bolten, M.; Kahl, K.; Sokolović, S.
Multigrid methods for Tensor structured Markov chains with low rank approximation
SIAM J. Sci. Comput., 38 (2) :A649-A667
2016

3402.

Bolten, M.; Kahl, K.; Sokolović, S.
Multigrid methods for Tensor structured Markov chains with low rank approximation
SIAM J. Sci. Comput., 38 (2) :A649--A667
2016

3401.

Günther, Michael; Hachtel, Christoph; Sandu, Adrian
Multirate {GARK} Schemes for Multiphysics Problems
Scientific Computing in Electrical Engineering
Seite 115--121
Herausgeber: Springer International Publishing
2016
115--121

3400.

Hachtel, Christoph; Kerler-Back, Johanna; Bartel, Andreas; Günther, Michael; Stykel, Tatjana
Multirate DAE/ODE-Simulation and Model Order Reduction for Coupled Circuit-Field Systems
2016

3399.

Günther, Michael; Hachtel, Christoph; Sandu, Adrian
Multirate GARK schemes for multiphysics problems
In Bartel, Andreas and Clemens, Markus and Günther, Michael and ter Maten, E. Jan W., Editor, Scientific Computing in Electrical Engineering: SCEE 2014, Wuppertal, Germany, July 2014ausMathematics in Industry, Seite 115–121
In Bartel, Andreas and Clemens, Markus and Günther, Michael and ter Maten, E. Jan W., Editor
Herausgeber: Springer Cham
2016

3398.

Günther, Michael; Hachtel, Christoph; Sandu, Adrian
Multirate GARK schemes for multiphysics problems
In Bartel, Andreas and Clemens, Markus and Günther, Michael and ter Maten, E. Jan W., Editor, Scientific Computing in Electrical Engineering: SCEE 2014, Wuppertal, Germany, July 2014ausMathematics in Industry, Seite 115–121
In Bartel, Andreas and Clemens, Markus and Günther, Michael and ter Maten, E. Jan W., Editor
Herausgeber: Springer Cham
2016

3397.

Bartel, Andreas; Günther, Michael; Hachtel, Christoph; Sandu, Adrian
Multirate GARK schemes for multiphysics problems
:115--121
2016

3396.

Günther, Michael; Sandu, Adrian
Multirate generalized additive Runge Kutta methods
Numerische Mathematik, 133 (3) :497–524
2016
Herausgeber: Springer New York

3395.

Günther, Michael; Sandu, Adrian
Multirate generalized additive Runge Kutta methods
Numerische Mathematik, 133 (3) :497–524
2016
Herausgeber: Springer New York

3394.

Günther, Michael; Sandu, Adrian
Multirate generalized additive Runge Kutta methods
Numerische Mathematik, 133 (3) :497--524
August 2016
Herausgeber: Springer Berlin Heidelberg

3393.

Maten, E Jan W; Putek, Piotr A; Günther, Michael; Pulch, Roland; Tischendorf, Caren; Strohm, Christian; Schoenmaker, Wim; Meuris, Peter; Smedt, Bart De; Benner, Peter; Feng, Lihong; Banagaaya, Nicodemus; Yue, Yao; Janssen, Rick; Dohmen, Jos J; Tasic, Bratislav; Deleu, Frederik; Gillon, Renaud; Wieers, Aarnout; Brachtendorf, Hans-Georg; Bittner, Kai; Kratochvíl, Tomáš; Petřzela, Jiří; Sotner, Roman; Götthans, Tomáš; Dřínovský, Jiří; Schöps, Sebastian; Guerra, David J Duque; Casper, Thorben; Gersem, Herbert De; Römer, Ulrich; Reynier, Pascal; Barroul, Patrice; Masliah, Denis; Rousseau, Benoît
Nanoelectronic COupled problems solutions - nanoCOPS: modelling, multirate, model order reduction, uncertainty quantification, fast fault simulation
Journal of Mathematics in Industry, 7 (1) :1–19
2016
Herausgeber: Springer Verlag