Computational Magnetics
Many electro-technical devices such as e.g. printed circuit boards, electrical drives and antenna systems can be simulated on the basis of electrical circuits. However, the increasing frequencies and the decreasing size force designers to account for wave propagation effects, eddy-current effects, ferromagnetic saturation and hysteresis. For wave propagation effects and eddy-current effects, the results of stand-alone field simulation can be represented by an order-reduced equivalent model, which is then inserted in the overall circuit model. The representation of field-dependent nonlinearities and hysteresis effects, however, is not straightforward.
2D Simulation of a Transformer
The coupled field and circuit simulation becomes troublesome when a large number of time steps is required. This occurs when e.g. simulating an electrical drive where the machine requires 10 periods of 50 Hz to reach nominal speed whereas the switching of the Insulated Gate Bipolar Transistors in the frequency converter switches at 20 kHz, necessitating a time steps in the order of a microsecond to be used in the simulation. Since the field model consists typically of a few million degrees of freedom, all those unknowns have to be solved in every time step. Fortunately, the relevant time constants in electrical-energy converter are in the range 50 Hz. Hence the field model does not have to be time-stepped at the same rate as the circuit model, in which fast switches are present. The use of adaptive multirate time-integration schemes can reduce the numerical complexity of the problem substantially.
Research Questions
- Efficiency of the time-integration for field devices in pulsed circuits (multirate, dynamic iteration)
- DAE-index of the coupled system
- Existence and Uniqueness of the solution
Cooperation
- Herbert De Gersem, Katholieke Universiteit Leuven
- Markus Clemens, Bergische Universität Wuppertal
- Sascha Baumanns, Universität zu Köln
Former and ongoing projects
Publications
- 2023
5043.
Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Structure-preserving identification of port-Hamiltonian systems - a sensitivity-based approach
20235042.
Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Structure-preserving identification of port-Hamiltonian systems--a sensitivity-based approach
arXiv preprint arXiv:2301.02019
20235041.
Relton, Samuel D.; Schweitzer, Marcel
Structured level-2 condition numbers of matrix functions
20235040.
Studies on the improvement of the matching uncertainty definition in top-quark processes simulated with Powheg+Pythia 8
CERN, Geneva
20235039.
Bolten, Matthias; Donatelli, M.; Ferrari, P.; Furci, I.
Symbol based convergence analysis in block multigrid methods with applications for Stokes problems
Appl. Numer. Math., 193 :109-130
20235038.
Bolten, Matthias; Donatelli, Marco; Ferrari, Paola; Furci, Isabella
Symbol based convergence analysis in multigrid methods for saddle point problems
Linear Algebra Appl., 671 :67--108
20235037.
Bolten, Matthias; Donatelli, Marco; Ferrari, Paola; Furci, Isabella
Symbol based convergence analysis in multigrid methods for saddle point problems
Linear Algebra Appl., 671 :67--108
20235036.
Günther, Michael; Sandu, Adrian; Schäfers, Kevin; Zanna, Antonella
Symplectic GARK methods for partitioned Hamiltonian systems
20235035.
Schäfers, Kevin; Günther, Michael; Sandu, Adrian
Symplectic multirate generalized additive Runge-Kutta methods for Hamiltonian systems
Preprint
20235034.
Schäfers, Kevin; Günther, Michael; Sandu, Adrian
Symplectic multirate generalized additive Runge-Kutta methods for Hamiltonian systems
Preprint
20235033.
Schäfers, Kevin; Günther, Michael; Sandu, Adrian
Symplectic multirate generalized additive Runge-Kutta methods for Hamiltonian systems
20235032.
Bolten, Matthias; Friedhoff, S.; Hahne, J.
Task graph-based performance analysis of parallel-in-time methods
Parallel Comput., 118 :103050
20235031.
Ehrhardt, Matthias; Kruse, Thomas; Tordeux, Antoine
The Collective Dynamics of a Stochastic Port-Hamiltonian Self-Driven Agent Model in One Dimension
arXiv preprint arXiv:2303.14735
20235030.
Lund, Kathryn; Schweitzer, Marcel
The Frechet derivative of the tensor t-function
Calcolo, 60 :35
20235029.
Lund, Kathryn; Schweitzer, Marcel
The Frechet derivative of the tensor t-function
Calcolo, 60
20235028.
Meinert, Janning; Morej\'on, Leonel; Sandrock, Alexander; Eichmann, Björn; Kreidelmeyer, Jonas; Kampert, Karl-Heinz
The impact of a modified CMB photon density on UHECR propagation
PoS, ICRC2023 :322
20235027.
Alameddine, Jean-Marco; others
The particle-shower simulation code CORSIKA 8
PoS, ICRC2023 :310
20235026.
Guerreiro, Andreia P.; Klamroth, Kathrin; Fonseca, Carlos M.
Theoretical aspects of subset selection in multi-objective optimization
In Brockhoff, D. and Emmerich, M. and Naujoks, B. and Purshouse, R., Editor aus Natural Computing Series
Seite 213--239
Herausgeber: Springer
2023
213--2395025.
[english] Rendon-Enriquez, Ibeth; Palma-Cando, Alex; Körber, Florian; Niebisch, Felix; Forster, Michael; Tausch, Michael W.; Scherf, Ullrich
Thin Polymer Films by Oxidative or Reductive Electropolymerization and Their Application in Electrochromic Windows and Thin-Film Sensors
molecules, 28 (2) :883
Januar 20235024.
Ehrhardt, Matthias
Three-dimensional modeling of sound field holograms of a moving source in the presence of internal waves causing horizontal refraction
Journal of Marine Science and Engineering, 11 (10) :1922
2023
Herausgeber: MDPI5023.
Ehrhardt, Matthias
Three-dimensional modeling of sound field holograms of a moving source in the presence of internal waves causing horizontal refraction
Journal of Marine Science and Engineering, 11 (10) :1922
2023
Herausgeber: MDPI5022.
Bülow, Friedrich; Hahn, Yannik; Meyes, Richard; Meisen, Tobias; others
Transparent and Interpretable State of Health Forecasting of Lithium-Ion Batteries with Deep Learning and Saliency Maps
International Journal of Energy Research, 2023
2023
Herausgeber: Hindawi5021.
Ehrhardt, Matthias
Transparent boundary conditions for the nonlocal nonlinear Schrödinger equation: A model for reflectionless propagation of PT-symmetric solitons
Physics Letters, Section A, 459 :128611
2023
Herausgeber: North-Holland5020.
Ehrhardt, Matthias
Transparent boundary conditions for the nonlocal nonlinear Schrödinger equation: A model for reflectionless propagation of PT-symmetric solitons
Physics Letters, Section A, 459 :128611
2023
Herausgeber: North-Holland5019.
Transparent boundary conditions for the nonlocal nonlinear Schrödinger equation: A model for reflectionless propagation of PT-symmetric solitons
Physics Letters A :128611
2023
Herausgeber: North-Holland