Applied and Computational Mathematics (ACM)



2022
M. Muniz, M. Ehrhardt, M. Günther and R. Winkler, "Higher strong order methods for linear Itô SDEs on matrix Lie groups", BIT Numerical Mathematics, pp. 1--25, 2022. Springer Netherlands Dordrecht.
M. Muniz, M. Ehrhardt, M. Günther and R. Winkler, "Higher strong order methods for linear It{\^o} SDEs on matrix Lie groups", BIT Numerical Mathematics, pp. 1--25, 2022. Springer Netherlands Dordrecht.
M. Muniz, M. Ehrhardt, M. Günther and R. Winkler, "Higher Strong Order Methods for linear {Itô} {SDEs} on matrix {Lie} Groups", BIT Numer. Math., Jan. 2022. Springer.
L. Teng, "Gradient boosting-based numerical methods for high dimensional backward stochastic differential equations", Appl. Math. Comput., vol. 426, pp. 127119, 2022.
F. Klass, A. Gabbana and A. Bartel, "A Characteristic Boundary Condition for Multispeed Lattice Boltzmann Methods", Accepted at Commun. Comput. Phys., 2022.
H. Fatoorehchi and M. Ehrhardt, "A combined method for stability analysis of linear time invariant and nonlinear continuous-time control systems based on the Hermite-Fujiwara matrix and Cholesky decomposition", 2022.
T. Kossaczká, M. Ehrhardt and M. Günther, "A deep smoothness WENO method with applications in option pricing" in Progress in Industrial Mathematics at ECMI 2021, Springer International Publishing Cham, 2022, pp. 417--423.
F. Klass, A. Gabbana and A. Bartel, "A non-reflecting boundary condition for multispeed lattice Boltzmann methods" in Accepted at Progress in Industrial Mathematics at ECMI 2021, M. Ehrhardt and M. Günther, Eds. Springer-Verlag, Berlin, 2022.

ISBN: 978-3-031-11817-3

J. Kienitz, G. Lee, N. Nowaczyk and N. Geng, "Dynamically Controlled Kernel Estimation", RISK, vol. 1, 2022.
M. H. Maamar, M. Ehrhardt and L. Tabharit, "A Nonstandard Finite Difference Scheme for a Time-Fractional Model of Zika Virus Transmission", 2022.
S. Treibert, H. Brunner and M. Ehrhardt, "A nonstandard finite difference scheme for the SVICDR model to predict COVID-19 dynamics", Math. Biosci. Eng, vol. 19, no. 2, pp. 1213--1238, 2022.
S. Berkhahn and M. Ehrhardt, "A physics-informed neural network to model COVID-19 infection and hospitalization scenarios", Advances in Continuous and Discrete Models, vol. 2022, no. 1, pp. 61, 2022. Springer International Publishing Cham.
M. Clemens, M. Henkel, F. Kasolis, M. Günther, H. De Gersem and S. Schöps, "Electromagnetic Quasistatic Field Formulations of Darwin Type", arXiv preprint arXiv:2204.06286, 2022.
J. Jäschke, M. Ehrhardt, M. Günther and B. Jacob, "A Two-Dimensional Port-Hamiltonian Model for Coupled Heat Transfer", Mathematics, vol. 10, no. 24, pp. 4635, 2022. MDPI.
Z. Zheng, G. Pang, M. Ehrhardt and B. Liu, "An efficient second-order method for the linearized Benjamin-Bona-Mahony equation with artificial boundary conditions", 2022.
T. Sch\"afers and L. Teng, "Asymmetry in stochastic volatility models with threshold and time-dependent correlation", Studies in Nonlinear Dynamics \& Econometrics, 2022.
M. Muniz, M. Ehrhardt and M. Günther, "Correlation Matrices Driven by Stochastic Isospectral Flows" in Progress in Industrial Mathematics at ECMI 2021, Springer International Publishing Cham, 2022, pp. 455--461.
J. Jäschke, M. Ehrhardt, M. Günther and B. Jacob, "Discrete port-Hamiltonian coupled heat transfer" in Progress in Industrial Mathematics at ECMI 2021, Springer International Publishing Cham, 2022, pp. 439--445.
J. Jäschke, M. Ehrhardt, M. Günther and B. Jacob, "A port-Hamiltonian formulation of coupled heat transfer", Mathematical and Computer Modelling of Dynamical Systems, vol. 28, no. 1, pp. 78--94, 2022. Taylor & Francis.
N. Nowaczyk, J. Kienitz, S. K. Acar and Q. Liang, "How deep is your model? Network topology selection from a model validation perspective", JMI, vol. 12 (1), 2022.
K. Sabirov, J. Yusupov, M. Ehrhardt and D. Matrasulov, "Transparent boundary conditions for the sine-Gordon equation: Modeling the reflectionless propagation of kink solitons on a line", Physics Letters A, vol. 423, pp. 127822, 2022. North-Holland.
P. S. Petrov, M. Ehrhardt and M. Trofimov, "On decomposition of the fundamental solution of the Helmholtz equation over solutions of iterative parabolic equations", Asymptotic Analysis, vol. 126, no. 3-4, pp. 215--228, 2022. IOS Press.
J. Ackermann, T. Kruse and L. Overbeck, "Inhomogeneous affine Volterra processes", Stochastic Processes and their Applications, vol. 150, pp. 250--279, 2022. North-Holland.
L. Agasthya, A. Bartel, L. Biferale, M. Ehrhardt and F. Toschi, "Lagrangian instabilities in thermal convection with", 2022.
L. Agasthya, A. Bartel, L. Biferale, M. Ehrhardt and F. Toschi, "Lagrangian instabilities in thermal convection with stable temperature profiles", arXiv preprint arXiv:2205.03856, Apr. 2022.

More information about #UniWuppertal: