Applied and Computational Mathematics (ACM)

Model Order Reduction

Model Order Reduction (MOR) is the art of reducing a system's complexity while preserving its input-output behavior as much as possible.

Processes in all fields of todays technological world, like physics, chemistry and electronics, but also in finance, are very often described by dynamical systems. With the help of these dynamical systems, computer simulations, i.e. virtual experiments, are carried out. In this way, new products can be designed without having to build costly prototyps.

Due to the demand of more and more realistic simulations, the dynamical systems, i.e., the mathematical models, have to reflect more and more details of the real world problem. By this, the models' dimensions are increasing and simulations can often be carried out at high computational cost only.

In the design process, however, results are needed quickly. In circuit design, e.g., structures may need to be changed or parameters may need to be altered, in order to satisfy design rules or meet the prescribed performance. One cannot afford idle time, waiting for long simulation runs to be ready.

Model Order Reduction allows to speed up simulations in cases where one is not interested in all details of a system but merely in its input-output behavior. That means, considering a system, one may ask:

  • How do varying parameters influence certain performances ?
    Using the example of circuit design: How do widths and lengths of transistor channels, e.g., influence the voltage gain of a circuit.
  • Is a system stable?
    Using the example of circuit design: In which frequency range, e.g., of voltage sources, does the circuit perform as expected
  • How do coupled subproblems interact?
    Using the example of circuit design: How are signals applied at input-terminals translated to output-pins?

Classical situations in circuit design, where one does not need to know internals of blocks are optimization of design parameters (widths, lengths, ...) and post layout simulations and full system verifications. In the latter two cases, systems of coupled models are considered. In post layout simulations one has to deal with artificial, parasitic circuits, describing wiring effects.

Model Order Reduction automatically captures the essential features of a structure, omitting information which are not decisive for the answer to the above questions. Model Order reduction replaces in this way a dynamical system with another dynamical system producing (almost) the same output, given the same input with less internal states.

MOR replaces high dimensional (e.g. millions of degrees of freedom) with low dimensional (e.g. a hundred of degrees of freedom ) problems, that are then used instead in the numerical simulation.

The working group "Applied Mathematics/Numerical Analysis" has gathered expertise in MOR, especially in circuit design. Within the EU-Marie Curie Initial Training Network COMSON, attention was concentrated on MOR for Differential Algebraic Equations. Members that have been working on MOR in the EU-Marie Curie Transfer of Knowledge project O-MOORE-NICE! gathered knowledge especially in the still immature field of MOR for nonlinear problems.

Current research topics include:

  • MOR for nonlinear, parameterized problems
  • structure preserving MOR
  • MOR for Differential Algebraic Equations
  • MOR in financial applications, i.e., option prizing

Group members working on that field

  • Jan ter Maten
  • Roland Pulch

Publications



2018

3892.

Hendricks, Christian; Ehrhardt, Matthias; Günther, Michael
Hybrid finite-difference/pseudospectral methods for the Heston and Heston-Hull-White partial differential equations
Journal of Computational Finance, 21 (5) :1–33
2018
Herausgeber: Incisive Media

3891.

Pulch, R.; Putek, P.; de Gersem, H.; Gillon, R.
Identification of probabilistic input data for a glue-die-package problem
In Quintela, P. and Barral, P. and Gómez, D. and Pena, F.J. and Rodríguez, J. and Salgado, P. and Vázquez-Mendéz, M.E., Editor, Progress in Industrial Mathematics at ECMI 2016 aus Mathematics in Industry
Seite 255--262
Herausgeber: Springer,
2018
255--262

3890.

Gomes, Ricardo J.; Guerreiro, Andreia P.; Kuhn, Tobias; Paquete, Luís
Implicit enumeration strategies for the hypervolume subset selection problem
Computers & Operations Research, 100 :244 - 253
2018

3889.

Jacob, Birgit; Nabiullin, Robert; Partington, Jonathan R.; Schwenninger, Felix L.
Infinite-dimensional input-to-state stability and {O}rlicz spaces
SIAM J. Control Optim., 56 (2) :868--889
2018

3888.

Jacob, Birgit; Nabiullin, Robert; Partington, Jonathan R.; Schwenninger, Felix L.
Infinite-dimensional input-to-state stability and Orlicz spaces
SIAM J. Control Optim., 56 (2) :868--889
2018

3887.

Kienitz, J.; Caspers, P.
Interest Rate Derivatives Explained: Volume 2 Term Structure and Volatility Modelling
Herausgeber: Palgrave McMillan
2018

3886.

Budde, Christian; Farkas, Bálint
Intermediate and extrapolated spaces for bi-continuous operator semigroups
Journal of Evolution Equations, 19 (2) :321-359
2018

3885.

Pulch, R.; Putek, P.; E.J.W. ; Schoenmaker, W.
IX: Uncertainty Quantification: Introduction and Implementations
In ter Maten, E. J. W. and Brachtendorf H., G. and Pulch, R. and Schoenmaker, W., Editor, Nanoelectronic Coupled Problems Solutions
Seite 195-216
Herausgeber: Springer
2018
195-216

3884.

Bohrmann-Linde, Claudia; Krüger, J.; Schneiderhahn, K.
Lehrerband zu Chemie 1 (Baden-Württemberg)
Herausgeber: C.C.Buchner, Bamberg
2018

3883.

Bohrmann-Linde, Claudia; Kröger, Simone; Siehr, I.
Lehrerband zu Chemie 2 (Berlin/Brandenburg)
Herausgeber: C.C.Buchner, Bamberg
2018

3882.

[english] Hoffmann, Heiko; Tausch, Michael W.
Low-Cost Equipment for Photochemical Reactions
Journal of Chemical Education, 95 (12) :2289--2292
2018
Herausgeber: American Chemical Society ({ACS})

3881.

Beckermann, Bernhard; Kressner, Daniel; Schweitzer, Marcel
Low-rank updates of matrix functions
SIAM J. Matrix Anal. Appl., 39 (1) :539-565
2018

3880.

Beckermann, Bernhard; Kressner, Daniel; Schweitzer, Marcel
Low-rank updates of matrix functions
SIAM J. Matrix Anal. Appl., 39 (1) :539-565
2018

3879.

Beckermann, Bernhard; Kressner, Daniel; Schweitzer, Marcel
Low-rank updates of matrix functions
SIAM J. Matrix Anal. Appl., 39 (1) :539-565
2018

3878.

Gerlach, Moritz; Glück, Jochen
Lower bounds and the asymptotic behaviour of positive operator semigroups
Ergodic Theory Dynam. Systems, 38 (8) :3012--3041
2018

3877.

Tausch, Michael W.
Mehr Licht im Chemieunterricht! Experimentelle Zugänge zu Grundkonzepten der Photochemie
{CHIMIA} International Journal for Chemistry, 72 (1) :23--26
2018
Herausgeber: Swiss Chemical Society

3876.

Kaminski, Martin
Methodenentwicklung einer Quarzrohrofenpyrolyse von Mikroplastik und Anreicherung der Produkte in Tenax® mit anschließender GCxGC-MS-Analytik
2018

3875.

Bolten, Matthias; Kahl, K.; Kressner, D.; Macedo, F.; Sokolović, S.
Multigrid methods combined with low-rank approximation for tensor-structured Markov chains
Electron. Trans. Numer. Anal., 48 :348-361
2018

3874.

Bolten, M.; Kahl, K.; Kressner, D.; Macedo, F.; Sokolović, S.
Multigrid methods combined with low-rank approximation for tensor-structured Markov chains
Electron. Trans. Numer. Anal., 48 :348-361
2018

3873.

Bolten, M.; Kahl, K.; Kressner, D.; Macedo, F.; Sokolović, S.
Multigrid methods combined with low-rank approximation for tensor-structured Markov chains
Electron. Trans. Numer. Anal., 48 :348--361
2018

3872.

Hachtel, Christoph; Kerler-Back, Johanna; Bartel, Andreas; Günther, Michael; Stykel, Tatjana
Multirate {DAE}/{ODE}-simulation and model order reduction for coupled field-circuit systems
Scientific Computing in Electrical Engineering: SCEE 2016, St. Wolfgang, Austria, October 2016, Seite 91--100
Springer International Publishing
Herausgeber: Springer International Publishing
2018

3871.

Hachtel, Christoph; Kerler-Back, Johanna; Bartel, Andreas; Günther, Michael; Stykel, Tatjana
Multirate DAE/ODE-simulation and model order reduction for coupled field-circuit systems
Scientific Computing in Electrical Engineering: SCEE 2016, St. Wolfgang, Austria, October 2016, Seite 91--100
Springer International Publishing
2018

3870.

Hachtel, Christoph; Kerler-Back, Johanna; Bartel, Andreas; Günther, Michael; Stykel, Tatjana
Multirate DAE/ODE-simulation and model order reduction for coupled field-circuit systems
In Langer, Ulrich and Amrhein, Wolfgang and Zulehner, Walter, Editor, Scientific Computing in Electrical Engineering: SCEE 2016, St. Wolfgang, Austria, October 2016ausMathematics in Industry, Seite 91–100
In Langer, Ulrich and Amrhein, Wolfgang and Zulehner, Walter, Editor
Herausgeber: Springer Cham
2018

3869.

Hachtel, Christoph; Kerler-Back, Johanna; Bartel, Andreas; Günther, Michael; Stykel, Tatjana
Multirate DAE/ODE-simulation and model order reduction for coupled field-circuit systems
In Langer, Ulrich and Amrhein, Wolfgang and Zulehner, Walter, Editor, Scientific Computing in Electrical Engineering: SCEE 2016, St. Wolfgang, Austria, October 2016ausMathematics in Industry, Seite 91–100
In Langer, Ulrich and Amrhein, Wolfgang and Zulehner, Walter, Editor
Herausgeber: Springer Cham
2018

3868.

Putek, Piotr; Janssen, Rick; Niehof, Jan; Maten, E. Jan W.; Pulch, Roland; Tasi{\'{c}}, Bratislav; Günther, Michael
Nanoelectronic {COupled} Problems Solutions: uncertainty quantification for analysis and optimization of an {RFIC} interference problem
JMI, 8 (1) :1-22
2018