Model Order Reduction
Model Order Reduction (MOR) is the art of reducing a system's complexity while preserving its input-output behavior as much as possible.
Processes in all fields of todays technological world, like physics, chemistry and electronics, but also in finance, are very often described by dynamical systems. With the help of these dynamical systems, computer simulations, i.e. virtual experiments, are carried out. In this way, new products can be designed without having to build costly prototyps.
Due to the demand of more and more realistic simulations, the dynamical systems, i.e., the mathematical models, have to reflect more and more details of the real world problem. By this, the models' dimensions are increasing and simulations can often be carried out at high computational cost only.
In the design process, however, results are needed quickly. In circuit design, e.g., structures may need to be changed or parameters may need to be altered, in order to satisfy design rules or meet the prescribed performance. One cannot afford idle time, waiting for long simulation runs to be ready.
Model Order Reduction allows to speed up simulations in cases where one is not interested in all details of a system but merely in its input-output behavior. That means, considering a system, one may ask:
- How do varying parameters influence certain performances ?
Using the example of circuit design: How do widths and lengths of transistor channels, e.g., influence the voltage gain of a circuit. - Is a system stable?
Using the example of circuit design: In which frequency range, e.g., of voltage sources, does the circuit perform as expected - How do coupled subproblems interact?
Using the example of circuit design: How are signals applied at input-terminals translated to output-pins?
Classical situations in circuit design, where one does not need to know internals of blocks are optimization of design parameters (widths, lengths, ...) and post layout simulations and full system verifications. In the latter two cases, systems of coupled models are considered. In post layout simulations one has to deal with artificial, parasitic circuits, describing wiring effects.
Model Order Reduction automatically captures the essential features of a structure, omitting information which are not decisive for the answer to the above questions. Model Order reduction replaces in this way a dynamical system with another dynamical system producing (almost) the same output, given the same input with less internal states.
MOR replaces high dimensional (e.g. millions of degrees of freedom) with low dimensional (e.g. a hundred of degrees of freedom ) problems, that are then used instead in the numerical simulation.
The working group "Applied Mathematics/Numerical Analysis" has gathered expertise in MOR, especially in circuit design. Within the EU-Marie Curie Initial Training Network COMSON, attention was concentrated on MOR for Differential Algebraic Equations. Members that have been working on MOR in the EU-Marie Curie Transfer of Knowledge project O-MOORE-NICE! gathered knowledge especially in the still immature field of MOR for nonlinear problems.
Current research topics include:
- MOR for nonlinear, parameterized problems
- structure preserving MOR
- MOR for Differential Algebraic Equations
- MOR in financial applications, i.e., option prizing
Group members working on that field
- Jan ter Maten
- Roland Pulch
Publications
- 2025
5478.
Kiesling, Elisabeth; Bohrmann-Linde, Claudia
Carbon Capture and Storage - Nachweis von adsorbiertem Kohlenstoffdioxid
Naturwissenschaften im Unterricht Chemie, 1/25 :Versuchskarteikarte
20255477.
Clément, François; Doerr, Carola; Klamroth, Kathrin; Paquete, Luís
Constructing Optimal Star Discrepancy Sets
accepted in Proceedings of the AMS
20255476.
Schaller, Manuel; Schmitz, Merlin; Jacob, Birgit; Farkas, Bálint
Dissipativity-based time domain decomposition for optimal control of hyperbolic {PDE}s
20255475.
Kunze, Markus; Mui, Jonathan; Ploss, David
Elliptic operators with non-local Wentzell-Robin boundary conditions
20255474.
Song, Yongcun; Wang, Ziqi; Zuazua, Enrique
FedADMM-InSa: An Inexact and Self-Adaptive ADMM for Federated Learning
Neural Network, 181
Januar 20255473.
Kienitz, J; Moodliyar, L
Gaussian views explained
Wilmott, 2025 (135) :72–77
2025
Herausgeber: Wilmott Magazine5472.
Xu, Zhuo; Tucsnak, Marius
Global Exponential Stabilization for a Simplified Fluid-Particle Interaction System
Januar 20255471.
Bartel, Andreas; Schaller, Manuel
Goal-oriented time adaptivity for port-Hamiltonian systems
Journal of Computational and Applied Mathematics, 461 :116450
2025
ISSN: 0377-04275470.
Schäfers, Kevin; Finkenrath, Jacob; Günther, Michael; Knechtli, Francesco
Hessian-free force-gradient integrators
Computer Physics Communications, 309 :109478
2025
ISSN: 0010-46555469.
Schäfers, Kevin; Finkenrath, Jacob; Günther, Michael; Knechtli, Francesco
Hessian-free force-gradient integrators
Computer Physics Communications, 309 :109478
2025
ISSN: 0010-46555468.
Schäfers, Kevin; Finkenrath, Jacob; Günther, Michael; Knechtli, Francesco
Hessian-free force-gradient integrators and their application to lattice QCD simulations
PoS, LATTICE2024 :025
20255467.
Schäfers, Kevin; Finkenrath, Jacob; Günther, Michael; Knechtli, Francesco
Hessian-free force-gradient integrators and their application to lattice QCD simulations
PoS, LATTICE2024 :025
20255466.
Krhac, Kaja; Schuller, Frederic P.; Stramigioli, Stefano
Hybrid Schrödinger-Liouville and projective dynamics
20255465.
Shaju, K.; Laepple, T.; Hirsch, N.; Zaspel, P.
Ice borehole thermometry: Sensor placement using greedy optimal sampling
EGUsphere, 2025 :1—25
20255464.
Hilbig, André; Schmitz, Denise
Informatikdidaktische Sicht auf Barrierefreiheit als Unterrichts- und Forschungsgegenstand
INFOS 2025 – 21. GI-Fachtagung Informatik und Schule
Stoos, Schweiz
20255463.
Vinod, Vivin; Zaspel, Peter
Investigating Data Hierarchies in Multifidelity Machine Learning for Excitation Energies
J. Chem. Theory Comput., 21 (6) :3077-3091
20255462.
Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Kernels for composition of positive linear operators
20255461.
[german] Grandrath, Rebecca; Orhan, Nalan; Bohrmann-Linde, Claudia
Konzeption einer Projektwoche zu den Themen Food Waste und Food Loss für die gymnasiale Oberstufe
In Andreas Keil, Annika Hanau und Julian Dietze (Hg.): BNE in der Lehrkräftebildung. Erkenntnisse aus Forschung und Praxis., Editor
Seite 315-325
Herausgeber: Waxmann
2025
315-3255460.
Khosrawi-Rad, Bijan; Keller, Paul; Grogorick, Linda; Benner, Dennis; Janson, Andreas; Robra-Bissantz, Susanne
Let's Play with AI! A 2x2 Experiment on Collaborative vs. Competitive Game Elements for Pedagogical Conversational Agents
Pre-ICIS SIG Services Workshop on Synergizing Service Ecosystems with AI
Bangkok, Thailand
20255459.
[german] Cornelius, Soraya; Bohrmann-Linde, Claudia
Motivieren mit (Teil-)Aufgaben zur Erklärvideoproduktion im Chemieunterricht
In Johannes Huwer, Timm Wilke, Amitabh Banerji, Editor, Band Progress in Digitalisation in Chemistry Education 2024. Digitales Lehren und Lernen an Hochschule und Schule im Fach Chemie
Seite 37-42
Herausgeber: Waxmann-Verlag, Münster New York
2025
37-42ISBN: 978-3-8188-0042-0
5458.
Finster, Rebecca; Grogorick, Linda; Robra-Bissantz, Susanne
Navigation im Cyberraum: Die NIS2-Umsetzung in der öffentlichen Verwaltung - mit KOMPASS und SEXTANT
Fachtagung Rechts- und Verwaltungsinformatik (RVI)
Hamburg
20255457.
Schweitzer, Marcel
Near instance optimality of the Lanczos method for Stieltjes and related matrix functions
SIAM J. Matrix Anal. Appl., 46 :1846-1865
20255456.
Bolten, Matthias; Doganay, Onur Tanil; Gottschalk, Hanno; Klamroth, Kathrin
Non-convex shape optimization by dissipative Hamiltonian flows
Engineering Optimization, 57 :384--403
20255455.
Beck, Christian; Jentzen, Arnulf; Kleinberg, Konrad; Kruse, Thomas
Nonlinear Monte Carlo Methods with Polynomial Runtime for Bellman Equations of Discrete Time High-Dimensional Stochastic Optimal Control Problems
Appl. Math. Optim., 91 (1) :26
20255454.
Figueira, José Rui; Klamroth, Kathrin; Stiglmayr, Michael; Sudhoff Santos, Julia
On the Computational Complexity of Multi-Objective Ordinal Unconstrained Combinatorial Optimization
Operations Research Letters :107302
2025