Applied and Computational Mathematics (ACM)

Model Order Reduction

Model Order Reduction (MOR) is the art of reducing a system's complexity while preserving its input-output behavior as much as possible.

Processes in all fields of todays technological world, like physics, chemistry and electronics, but also in finance, are very often described by dynamical systems. With the help of these dynamical systems, computer simulations, i.e. virtual experiments, are carried out. In this way, new products can be designed without having to build costly prototyps.

Due to the demand of more and more realistic simulations, the dynamical systems, i.e., the mathematical models, have to reflect more and more details of the real world problem. By this, the models' dimensions are increasing and simulations can often be carried out at high computational cost only.

In the design process, however, results are needed quickly. In circuit design, e.g., structures may need to be changed or parameters may need to be altered, in order to satisfy design rules or meet the prescribed performance. One cannot afford idle time, waiting for long simulation runs to be ready.

Model Order Reduction allows to speed up simulations in cases where one is not interested in all details of a system but merely in its input-output behavior. That means, considering a system, one may ask:

  • How do varying parameters influence certain performances ?
    Using the example of circuit design: How do widths and lengths of transistor channels, e.g., influence the voltage gain of a circuit.
  • Is a system stable?
    Using the example of circuit design: In which frequency range, e.g., of voltage sources, does the circuit perform as expected
  • How do coupled subproblems interact?
    Using the example of circuit design: How are signals applied at input-terminals translated to output-pins?

Classical situations in circuit design, where one does not need to know internals of blocks are optimization of design parameters (widths, lengths, ...) and post layout simulations and full system verifications. In the latter two cases, systems of coupled models are considered. In post layout simulations one has to deal with artificial, parasitic circuits, describing wiring effects.

Model Order Reduction automatically captures the essential features of a structure, omitting information which are not decisive for the answer to the above questions. Model Order reduction replaces in this way a dynamical system with another dynamical system producing (almost) the same output, given the same input with less internal states.

MOR replaces high dimensional (e.g. millions of degrees of freedom) with low dimensional (e.g. a hundred of degrees of freedom ) problems, that are then used instead in the numerical simulation.

The working group "Applied Mathematics/Numerical Analysis" has gathered expertise in MOR, especially in circuit design. Within the EU-Marie Curie Initial Training Network COMSON, attention was concentrated on MOR for Differential Algebraic Equations. Members that have been working on MOR in the EU-Marie Curie Transfer of Knowledge project O-MOORE-NICE! gathered knowledge especially in the still immature field of MOR for nonlinear problems.

Current research topics include:

  • MOR for nonlinear, parameterized problems
  • structure preserving MOR
  • MOR for Differential Algebraic Equations
  • MOR in financial applications, i.e., option prizing

Group members working on that field

  • Jan ter Maten
  • Roland Pulch

Publications



2021

4513.

Teng, Long; Zhao, Weidong
High-order combined multi-step scheme for solving forward backward stochastic differential equations
JSC, 87 (81)
2021

4512.

Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher Strong Order Methods for It$\backslash$\^{} o SDEs on Matrix Lie Groups
arXiv preprint arXiv:2102.04131
2021

4511.

Anchordoqui, Luis A.; others
Hunting super-heavy dark matter with ultra-high energy photons
Astropart. Phys., 132 :102614
2021

4510.

Schultes, Johanna; Stiglmayr, Michael; Klamroth, Kathrin; Hahn, Camilla
Hypervolume Scalarization for Shape Optimization to Improve Reliability and Cost of Ceramic Components
Optimization and Engineering, 22 (2) :1203-1231
2021

4509.

Acu, Ana-Maria; Heilmann, Margareta; Raşa, Ioan
Iterates of convolution-type operators
Positivity, 25 :495-506
2021

4508.

Zeller, Diana
Kursbuch Gase und Überraschungen. Eine Lerneinheit des Konzepts KriViNat
Herausgeber: Chemiedidaktik. Bergische Universität Wuppertal
2021
online

4507.

Jacob, Birgit; Partington, Jonathan R.; Pott, Sandra; Rydhex, Eskil; Schwenninger, Felix L.
Laplace-Carleson embeddings and infinity-norm admissibility
2021

4506.

Ehrhardt, Matthias
Lattice Kinetic Algorithms for relativistic flows: a unified treatment
University of Cyprus
2021

4505.

Rautenberg, Julian
Limits on ultra-high energy photons with the Pierre Auger Observatory
PoS, ICRC2019 :398
2021

4504.

Sandu, Adrian; Günther, Michael; Roberts, Steven
Linearly implicit GARK schemes
Applied Numerical Mathematics, 161 :286--310
2021
Herausgeber: North-Holland

4503.

Sandu, Adrian; Günther, Michael; Roberts, Steven
Linearly implicit GARK schemes
Applied Numerical Mathematics, 161 :286–310
2021
Herausgeber: Elsevier

4502.

Sandu, Adrian; Günther, Michael; Roberts, Steven
Linearly implicit GARK schemes
Applied Numerical Mathematics, 161 :286–310
2021
Herausgeber: Elsevier

4501.

Beckermann, Bernhard; Cortinovis, Alice; Kressner, Daniel; Schweitzer, Marcel
Low-rank updates of matrix functions II: Rational Krylov methods
SIAM J. Numer. Anal., 59 (3) :1325-1347
2021

4500.

Beckermann, Bernhard; Cortinovis, Alice; Kressner, Daniel; Schweitzer, Marcel
Low-rank updates of matrix functions II: Rational Krylov methods
SIAM J. Numer. Anal., 59 (3) :1325-1347
2021

4499.

Beckermann, Bernhard; Cortinovis, Alice; Kressner, Daniel; Schweitzer, Marcel
Low-rank updates of matrix functions II: Rational Krylov methods
SIAM J. Numer. Anal., 59 (3) :1325-1347
2021

4498.

Haussmann, N.; Zang, M.; Mease, R.; Clemens, M.; Schmuelling, B.
Magnetic Dosimetry Simulations of Wireless Power Transfer Systems with High Resolution Voxel Models Utilizing the Co-Simulation Scalar Potential Finite Difference Scheme
The 12th International Symposium on Electric and Magnetic Fields (EMF 2021), Online Conference, 06.-08.07.2021. Abstract accepted.
2021

4497.

Zang, M.; Haussmann, N.; Mease, R.; Clemens, M.; Schmuelling, B.
Magnetic Field Exposure Simulations of Human Bodies close by a Wireless Power Transfer System of an Elec-trically Powered Taxi
The 12th International Symposium on Electric and Magnetic Fields (EMF 2021), Online Conference, 06.-08.07.2021. Abstract accepted.
2021

4496.

Araújo, Adérito; Ehrhardt, Matthias
Mathematical models of the spread and consequences of the SARS-CoV-2 pandemics: Effects on health, society, industry, economics and technology
Journal of Mathematics in Industry, 11 :1–2
2021
Herausgeber: Springer Verlag

4495.

Araújo, Adérito; Ehrhardt, Matthias
Mathematical models of the spread and consequences of the SARS-CoV-2 pandemics: Effects on health, society, industry, economics and technology
Journal of Mathematics in Industry, 11 :1–2
2021
Herausgeber: Springer Verlag

4494.

Araújo, Adérito; Ehrhardt, Matthias
Mathematical models of the spread and consequences of the SARS-CoV-2 pandemics: Effects on health, society, industry, economics and technology
2021

4493.

Bannenberg, Marcus WFM; Kasolis, Fotios; Günther, Michael; Clemens, Markus
Maximum entropy snapshot sampling for reduced basis modelling
COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 41 (3) :954--966
2021
Herausgeber: Emerald Publishing Limited

4492.

Burger, Martin; Pinnau, Rene; Totzeck, Claudia; Tse, Oliver
Mean-field optimal control and optimality conditions in the space of probability measures
SIAM Journal of Control and Optimization, 59 (2) :977-1006
2021

4491.

Burger, Martin; Kreusser, Lisa Maria; Totzeck, Claudia
Mean-field optimal control for biological pattern formation
ESAIM COCV, 27 (40)
2021

4490.

Aab, Alexander; others
Measurement of the Fluctuations in the Number of Muons in Extensive Air Showers with the Pierre Auger Observatory
Phys. Rev. Lett., 126 (15) :152002
2021

4489.

Gesell, H.; Gutt, R.; Janssen, N.; Janoske, U.
Modeling of the Aluminium Electrolysis Process: Feeding and Dissolution of Alumina Particles
presented at NAFEMS World Congress 2022
Oktober 2021