Model Order Reduction
Model Order Reduction (MOR) is the art of reducing a system's complexity while preserving its input-output behavior as much as possible.
Processes in all fields of todays technological world, like physics, chemistry and electronics, but also in finance, are very often described by dynamical systems. With the help of these dynamical systems, computer simulations, i.e. virtual experiments, are carried out. In this way, new products can be designed without having to build costly prototyps.
Due to the demand of more and more realistic simulations, the dynamical systems, i.e., the mathematical models, have to reflect more and more details of the real world problem. By this, the models' dimensions are increasing and simulations can often be carried out at high computational cost only.
In the design process, however, results are needed quickly. In circuit design, e.g., structures may need to be changed or parameters may need to be altered, in order to satisfy design rules or meet the prescribed performance. One cannot afford idle time, waiting for long simulation runs to be ready.
Model Order Reduction allows to speed up simulations in cases where one is not interested in all details of a system but merely in its input-output behavior. That means, considering a system, one may ask:
- How do varying parameters influence certain performances ?
Using the example of circuit design: How do widths and lengths of transistor channels, e.g., influence the voltage gain of a circuit. - Is a system stable?
Using the example of circuit design: In which frequency range, e.g., of voltage sources, does the circuit perform as expected - How do coupled subproblems interact?
Using the example of circuit design: How are signals applied at input-terminals translated to output-pins?
Classical situations in circuit design, where one does not need to know internals of blocks are optimization of design parameters (widths, lengths, ...) and post layout simulations and full system verifications. In the latter two cases, systems of coupled models are considered. In post layout simulations one has to deal with artificial, parasitic circuits, describing wiring effects.
Model Order Reduction automatically captures the essential features of a structure, omitting information which are not decisive for the answer to the above questions. Model Order reduction replaces in this way a dynamical system with another dynamical system producing (almost) the same output, given the same input with less internal states.
MOR replaces high dimensional (e.g. millions of degrees of freedom) with low dimensional (e.g. a hundred of degrees of freedom ) problems, that are then used instead in the numerical simulation.
The working group "Applied Mathematics/Numerical Analysis" has gathered expertise in MOR, especially in circuit design. Within the EU-Marie Curie Initial Training Network COMSON, attention was concentrated on MOR for Differential Algebraic Equations. Members that have been working on MOR in the EU-Marie Curie Transfer of Knowledge project O-MOORE-NICE! gathered knowledge especially in the still immature field of MOR for nonlinear problems.
Current research topics include:
- MOR for nonlinear, parameterized problems
- structure preserving MOR
- MOR for Differential Algebraic Equations
- MOR in financial applications, i.e., option prizing
Group members working on that field
- Jan ter Maten
- Roland Pulch
Publications
- 2022
4817.
[german] Zeller, Diana
Heimische Ökosysteme erkunden. Mit Maphub kooperative, ökologische Kartierung umsetzen.
Digital Unterricht Biologie, 1 (1/2022) :10-11
Januar 20224816.
[english] Mertineit, Ann-Kathrin; Burdinski, Dirk; Zulauf, Bert; Hackradt, Hans; Meuter, Nico; Bohrmann-Linde, Claudia; Schaper, Klaus
Helping Digital Natives to Become Digital Natives Through Production Standards, Research AND Quality Ssystems?
Seite 3913-3920
2022ISBN: 978-84-09-45476-1
4815.
Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher Strong Order Methods for linear {Itô} {SDEs} on matrix {Lie} Groups
BIT Numer. Math.
Januar 2022
Herausgeber: Springer
ISSN: 1572-91254814.
Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher strong order methods for linear It{\^o} SDEs on matrix Lie groups
BIT Numerical Mathematics :1--25
2022
Herausgeber: Springer Netherlands Dordrecht4813.
Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher strong order methods for linear Itô SDEs on matrix Lie groups
BIT Numerical Mathematics, 62 (3) :1095–1119
2022
Herausgeber: Springer Netherlands4812.
Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher strong order methods for linear Itô SDEs on matrix Lie groups
BIT Numerical Mathematics, 62 (3) :1095–1119
2022
Herausgeber: Springer Netherlands4811.
Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher strong order methods for linear Itô SDEs on matrix Lie groups
BIT Numerical Mathematics, 62 (3) :1095–1119
2022
Herausgeber: Springer Netherlands4810.
Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher strong order methods for linear Itô SDEs on matrix Lie groups
BIT Numerical Mathematics :1--25
2022
Herausgeber: Springer Netherlands Dordrecht4809.
Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Higher strong order methods for linear Ito SDEs on matrix Lie groups (Jan, 10.1007/s10543-021-00905-9, 2022)
BIT Numerical Mathematics, 62 (3) :1093--1093
2022
Herausgeber: SPRINGER VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS4808.
Nowaczyk, Nikolai; Kienitz, Jörg; Acar, Sarp Kaya; Liang, Qian
How deep is your model? Network topology selection from a model validation perspective
Journal of Mathematics in Industry, 12 (1) :1
2022
Herausgeber: Springer Verlag4807.
Nowaczyk, N.; Kienitz, J.; Acar, S. K.; Liang, Q.
How deep is your model? Network topology selection from a model validation perspective
JMI, 12 (1)
20224806.
Hypervalent Iodine-Mediated Azidation Reactions
European Journal of Organic Chemistry (34)
2022
ISSN: 1434-193X4805.
Henkel, Marvin-Lucas; Kasolis, Fotios; Clemens, Markus; Günther, Michael; Schöps, Sebastian
Implicit Gauging of Electromagneto-Quasistatic Field Formulations
IEEE Transactions on Magnetics, 58 (9) :1--4
2022
Herausgeber: IEEE4804.
Henkel, Marvin-Lucas; Kasolis, Fotios; Clemens, Markus; Günther, Michael; Schöps, Sebastian
Implicit gauging of electromagneto-quasistatic field formulations
IEEE Transactions on Magnetics, 58 (9) :1–4
2022
Herausgeber: IEEE4803.
Henkel, Marvin-Lucas; Kasolis, Fotios; Clemens, Markus; Günther, Michael; Schöps, Sebastian
Implicit gauging of electromagneto-quasistatic field formulations
IEEE Transactions on Magnetics, 58 (9) :1–4
2022
Herausgeber: IEEE4802.
Ackermann, Julia; Kruse, Thomas; Overbeck, Ludger
Inhomogeneous affine Volterra processes
Stochastic Processes and their Applications, 150 :250–279
2022
Herausgeber: North-Holland4801.
Ackermann, Julia; Kruse, Thomas; Overbeck, Ludger
Inhomogeneous affine Volterra processes
Stochastic Processes and their Applications, 150 :250--279
2022
Herausgeber: North-Holland4800.
Ackermann, Julia; Kruse, Thomas; Overbeck, Ludger
Inhomogeneous affine Volterra processes
Stochastic Processes and their Applications, 150 :250–279
2022
Herausgeber: North-Holland4799.
Burgmann, Sebastian; Krämer, Veronika; Rohde, Martin; Dues, Michael; Janoske, Uwe
Inner and outer flow of an adhering droplet in shear flow
International Journal of Multiphase Flow, 153 :104140
2022
ISSN: 0301-93224798.
Hosfeld, René; Jacob, Birgit; Schwenninger, Felix
Integral input-to-state stability of unbounded bilinear control systems
Math. Control Signals Systems, 34 (2) :273-295
20224797.
Schweitzer, Marcel
Integral representations for higher-order Fréchet derivatives of matrix functions: Quadrature algorithms and new results on the level-2 condition number
20224796.
Tovar, Carmen Maria; Barnes, Ian; Bejan, Iustinian Gabriel; Wiesen, Peter
Kinetic study of the atmospheric oxidation of a series of epoxy compounds by OH radicals
Atmospheric Chemistry and Physics, 22 (10) :6989—7004
Mai 2022
ISSN: 1680-73244795.
Cardona, Alejandro L.; Gibilisco, Rodrigo G.; Rivela, Cynthia B.; Blanco, María B.; Patroescu-Klotz, Iulia; Illmann, Niklas; Wiesen, Peter; Teruel, Mariano A.
Kinetics, product distribution and atmospheric implications of the gas-phase oxidation of allyl sulfides by OH radicals
Chemosphere, 288 :132546
Februar 2022
ISSN: 004565354794.
Bolten, Matthias; Sturler, E. De; Hahn, C.
Krylov Subspace Recycling for Evolving Structures
Comput. Methods Appl. Mech. Engrg., 391 :114222
20224793.
Bolten, M.; Sturler, E. De; Hahn, C.
Krylov Subspace Recycling for Evolving Structures
Comput. Methods Appl. Mech. Engrg., 391 :114222
2022