Applied and Computational Mathematics (ACM)

Model Order Reduction

Model Order Reduction (MOR) is the art of reducing a system's complexity while preserving its input-output behavior as much as possible.

Processes in all fields of todays technological world, like physics, chemistry and electronics, but also in finance, are very often described by dynamical systems. With the help of these dynamical systems, computer simulations, i.e. virtual experiments, are carried out. In this way, new products can be designed without having to build costly prototyps.

Due to the demand of more and more realistic simulations, the dynamical systems, i.e., the mathematical models, have to reflect more and more details of the real world problem. By this, the models' dimensions are increasing and simulations can often be carried out at high computational cost only.

In the design process, however, results are needed quickly. In circuit design, e.g., structures may need to be changed or parameters may need to be altered, in order to satisfy design rules or meet the prescribed performance. One cannot afford idle time, waiting for long simulation runs to be ready.

Model Order Reduction allows to speed up simulations in cases where one is not interested in all details of a system but merely in its input-output behavior. That means, considering a system, one may ask:

  • How do varying parameters influence certain performances ?
    Using the example of circuit design: How do widths and lengths of transistor channels, e.g., influence the voltage gain of a circuit.
  • Is a system stable?
    Using the example of circuit design: In which frequency range, e.g., of voltage sources, does the circuit perform as expected
  • How do coupled subproblems interact?
    Using the example of circuit design: How are signals applied at input-terminals translated to output-pins?

Classical situations in circuit design, where one does not need to know internals of blocks are optimization of design parameters (widths, lengths, ...) and post layout simulations and full system verifications. In the latter two cases, systems of coupled models are considered. In post layout simulations one has to deal with artificial, parasitic circuits, describing wiring effects.

Model Order Reduction automatically captures the essential features of a structure, omitting information which are not decisive for the answer to the above questions. Model Order reduction replaces in this way a dynamical system with another dynamical system producing (almost) the same output, given the same input with less internal states.

MOR replaces high dimensional (e.g. millions of degrees of freedom) with low dimensional (e.g. a hundred of degrees of freedom ) problems, that are then used instead in the numerical simulation.

The working group "Applied Mathematics/Numerical Analysis" has gathered expertise in MOR, especially in circuit design. Within the EU-Marie Curie Initial Training Network COMSON, attention was concentrated on MOR for Differential Algebraic Equations. Members that have been working on MOR in the EU-Marie Curie Transfer of Knowledge project O-MOORE-NICE! gathered knowledge especially in the still immature field of MOR for nonlinear problems.

Current research topics include:

  • MOR for nonlinear, parameterized problems
  • structure preserving MOR
  • MOR for Differential Algebraic Equations
  • MOR in financial applications, i.e., option prizing

Group members working on that field

  • Jan ter Maten
  • Roland Pulch

Publications



2022

4917.

Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
A deep smoothness WENO method with applications in option pricing
Progress in Industrial Mathematics at ECMI 2021
Seite 417--423
Herausgeber: Springer International Publishing Cham
2022
417--423

4916.

Edeko, Nikolai; Kreidler, Henrik; Nagel, Rainer
A dynamical proof of the van der Corput inequality
Dynamical Systems, 37 :648-665
2022

4915.

Hermle, Patrick; Kreidler, Henrik
A Halmos-von Neumann theorem for actions of general groups
2022

4914.

Budde, Christian; Dobrick, Alexander; Glück, Jochen; Kunze, Markus
A monotone convergence theorem for strong Feller semigroups
2022

4913.

Ehrhardt, Matthias; Günther, Michael
A neural network enhanced weighted essentially non-oscillatory method for nonlinear degenerate parabolic equations
Physics of Fluids, 34 (2) :026604
2022
Herausgeber: AIP Publishing

4912.

Ehrhardt, Matthias; Günther, Michael
A neural network enhanced weighted essentially non-oscillatory method for nonlinear degenerate parabolic equations
Physics of Fluids, 34 (2) :026604
2022
Herausgeber: AIP Publishing

4911.

Ehrhardt, Matthias; Günther, Michael
A neural network enhanced weighted essentially non-oscillatory method for nonlinear degenerate parabolic equations
Physics of Fluids, 34 (2) :026604
2022
Herausgeber: AIP Publishing

4910.


A neural network enhanced weighted essentially non-oscillatory method for nonlinear degenerate parabolic equations
Physics of Fluids, 34 (2) :026604
2022
Herausgeber: AIP Publishing LLC

4909.

Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
A non-reflecting boundary condition for multispeed lattice Boltzmann methods
In Ehrhardt, Matthias and Günther, Michael, Editor, Progress in Industrial Mathematics at ECMI 2021ausMathematics in Industry, Seite 447–453
In Ehrhardt, Matthias and Günther, Michael, Editor
Herausgeber: Springer Cham
2022

4908.

Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
A non-reflecting boundary condition for multispeed lattice Boltzmann methods
In Ehrhardt, Matthias and Günther, Michael, Editor, Progress in Industrial Mathematics at ECMI 2021ausMathematics in Industry, Seite 447–453
In Ehrhardt, Matthias and Günther, Michael, Editor
Herausgeber: Springer Cham
2022

4907.

Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
A non-reflecting boundary condition for multispeed lattice Boltzmann methods
In Ehrhardt, Matthias and Günther, Michael, Editor, Progress in Industrial Mathematics at ECMI 2021ausMathematics in Industry, Seite 447–453
In Ehrhardt, Matthias and Günther, Michael, Editor
Herausgeber: Springer Cham
2022

4906.

Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
A non-reflecting boundary condition for multispeed lattice Boltzmann methods
In M. Ehrhardt and M. Günther, Editor, Accepted at Progress in Industrial Mathematics at ECMI 2021
Herausgeber: Springer-Verlag, Berlin
2022

ISBN: 978-3-031-11817-3

4905.

Ehrhardt, Matthias
A Nonstandard Finite Difference Scheme for a Time-Fractional Model of Zika Virus Transmission
2022

4904.

Treibert, Sarah; Brunner, Helmut; Ehrhardt, Matthias
A nonstandard finite difference scheme for the SVICDR model to predict COVID-19 dynamics
Mathematical Biosciences and Engineering, 19 (2) :1213–1238
2022
Herausgeber: AIMS Press

4903.

Treibert, Sarah; Brunner, Helmut; Ehrhardt, Matthias
A nonstandard finite difference scheme for the SVICDR model to predict COVID-19 dynamics
Mathematical Biosciences and Engineering, 19 (2) :1213–1238
2022
Herausgeber: AIMS Press

4902.

Treibert, Sarah; Brunner, Helmut; Ehrhardt, Matthias
A nonstandard finite difference scheme for the SVICDR model to predict COVID-19 dynamics
Math. Biosci. Eng, 19 (2) :1213--1238
2022

4901.

Glück, Jochen
A note on the spectrum of irreducible operators and semigroups
Proc. Amer. Math. Soc., 150 (1) :257--266
2022

4900.

Zoller, Julian; Zargaran, Amin; Braschke, Kamil; Meyer, Jörg; Janoske, Uwe; Dittler, Achim
A Novel Apparatus for Simultaneous Laser-Light-Sheet Optical Particle Counting and Video Recording in the Same Measurement Chamber at High Temperature
Sensors, 22 (4)
2022
ISSN: 1424-8220

4899.

Ehrhardt, Matthias
A physics-informed neural network to model COVID-19 infection and hospitalization scenarios
Advances in continuous and discrete models, 2022 (1) :1–27
2022
Herausgeber: Springer Science and Business Media Deutschland GmbH

4898.

Ehrhardt, Matthias
A physics-informed neural network to model COVID-19 infection and hospitalization scenarios
Advances in continuous and discrete models, 2022 (1) :1–27
2022
Herausgeber: Springer Science and Business Media Deutschland GmbH

4897.

Ehrhardt, Matthias
A physics-informed neural network to model COVID-19 infection and hospitalization scenarios
Advances in Continuous and Discrete Models, 2022 (1) :61
2022
Herausgeber: Springer International Publishing Cham

4896.

Jäschke, Jens; Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit
A port-Hamiltonian formulation of coupled heat transfer
Mathematical and Computer Modelling of Dynamical Systems, 28 (1) :78–94
2022
Herausgeber: Taylor & Francis

4895.

Jäschke, Jens; Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit
A port-Hamiltonian formulation of coupled heat transfer
Mathematical and Computer Modelling of Dynamical Systems, 28 (1) :78–94
2022
Herausgeber: Taylor & Francis

4894.

Jäschke, Jens; Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit
A port-Hamiltonian formulation of coupled heat transfer
Mathematical and Computer Modelling of Dynamical Systems, 28 (1) :78–94
2022
Herausgeber: Taylor & Francis

4893.

Jäschke, Jens; Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit
A port-Hamiltonian formulation of coupled heat transfer
Mathematical and Computer Modelling of Dynamical Systems, 28 (1) :78--94
2022
Herausgeber: Taylor & Francis