Model Order Reduction
Model Order Reduction (MOR) is the art of reducing a system's complexity while preserving its input-output behavior as much as possible.
Processes in all fields of todays technological world, like physics, chemistry and electronics, but also in finance, are very often described by dynamical systems. With the help of these dynamical systems, computer simulations, i.e. virtual experiments, are carried out. In this way, new products can be designed without having to build costly prototyps.
Due to the demand of more and more realistic simulations, the dynamical systems, i.e., the mathematical models, have to reflect more and more details of the real world problem. By this, the models' dimensions are increasing and simulations can often be carried out at high computational cost only.
In the design process, however, results are needed quickly. In circuit design, e.g., structures may need to be changed or parameters may need to be altered, in order to satisfy design rules or meet the prescribed performance. One cannot afford idle time, waiting for long simulation runs to be ready.
Model Order Reduction allows to speed up simulations in cases where one is not interested in all details of a system but merely in its input-output behavior. That means, considering a system, one may ask:
- How do varying parameters influence certain performances ?
Using the example of circuit design: How do widths and lengths of transistor channels, e.g., influence the voltage gain of a circuit. - Is a system stable?
Using the example of circuit design: In which frequency range, e.g., of voltage sources, does the circuit perform as expected - How do coupled subproblems interact?
Using the example of circuit design: How are signals applied at input-terminals translated to output-pins?
Classical situations in circuit design, where one does not need to know internals of blocks are optimization of design parameters (widths, lengths, ...) and post layout simulations and full system verifications. In the latter two cases, systems of coupled models are considered. In post layout simulations one has to deal with artificial, parasitic circuits, describing wiring effects.
Model Order Reduction automatically captures the essential features of a structure, omitting information which are not decisive for the answer to the above questions. Model Order reduction replaces in this way a dynamical system with another dynamical system producing (almost) the same output, given the same input with less internal states.
MOR replaces high dimensional (e.g. millions of degrees of freedom) with low dimensional (e.g. a hundred of degrees of freedom ) problems, that are then used instead in the numerical simulation.
The working group "Applied Mathematics/Numerical Analysis" has gathered expertise in MOR, especially in circuit design. Within the EU-Marie Curie Initial Training Network COMSON, attention was concentrated on MOR for Differential Algebraic Equations. Members that have been working on MOR in the EU-Marie Curie Transfer of Knowledge project O-MOORE-NICE! gathered knowledge especially in the still immature field of MOR for nonlinear problems.
Current research topics include:
- MOR for nonlinear, parameterized problems
- structure preserving MOR
- MOR for Differential Algebraic Equations
- MOR in financial applications, i.e., option prizing
Group members working on that field
- Jan ter Maten
- Roland Pulch
Publications
- 2024
5217.
Clemens, Markus; Henkel, Marvin-Lucas; Kasolis, Fotios; Günther, Michael
Structural Aspects of Electromagneto-Quasistatic Field Formulations of Darwin-Type Derived in the Port-Hamiltonian System Framework
TechRxiv
2024
Herausgeber: IEEE5216.
Günther, M.; Jacob, Birgit; Totzeck, Claudia
Structure-preserving identification of port-Hamiltonian systems - a sensitivity-based approach
Band 43
Herausgeber: Springer, Cham.
van Beurden, M., Budko, N.V., Ciuprina, G., Schilders, W., Bansal, H., Barbulescu, R. Edition
20245215.
Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Structure-Preserving Identification of Port-Hamiltonian Systems—A Sensitivity-Based Approach
In van Beurden, Martijn and Budko, Neil V. and Ciuprina, Gabriela and Schilders, Wil and Bansal, Harshit and Barbulescu, Ruxandra, Editor, Scientific Computing in Electrical Engineering SCEE 2022, Amsterdam, The Netherlands, July 2022ausMathematics in Industry, Seite 167–174
In van Beurden, Martijn and Budko, Neil V. and Ciuprina, Gabriela and Schilders, Wil and Bansal, Harshit and Barbulescu, Ruxandra, Editor
Herausgeber: Springer Cham
20245214.
Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Structure-Preserving Identification of Port-Hamiltonian Systems—A Sensitivity-Based Approach
In van Beurden, Martijn and Budko, Neil V. and Ciuprina, Gabriela and Schilders, Wil and Bansal, Harshit and Barbulescu, Ruxandra, Editor, Scientific Computing in Electrical Engineering SCEE 2022, Amsterdam, The Netherlands, July 2022ausMathematics in Industry, Seite 167–174
In van Beurden, Martijn and Budko, Neil V. and Ciuprina, Gabriela and Schilders, Wil and Bansal, Harshit and Barbulescu, Ruxandra, Editor
Herausgeber: Springer Cham
20245213.
Arslan, Bahar; Relton, Samuel D.; Schweitzer, Marcel
Structured level-2 condition numbers of matrix functions
Electron. J. Linear Algebra, 40 :28-47
20245212.
Ghasemzadeh, Mohammadamin; Amirfazli, Alidad
Study of Insect Impact on an Aerodynamic Body Using a Rotary Wing Simulator
Fluids, 9 (1)
2024
ISSN: 2311-55215211.
Levron, Yoash; Valadez, Alan; Weiss, George
Testing the Local Stability of a Multi-Machine Power System with Constant Power Loads
September 20245210.
Ehrhardt, Matthias; Kruse, Thomas; Tordeux, Antoine
The collective dynamics of a stochastic port-Hamiltonian self-driven agent model in one dimension
ESAIM: Mathematical Modelling and Numerical Analysis, 58 (2) :515–544
2024
Herausgeber: EDP Sciences5209.
Ehrhardt, Matthias; Kruse, Thomas; Tordeux, Antoine
The collective dynamics of a stochastic port-Hamiltonian self-driven agent model in one dimension
ESAIM: Mathematical Modelling and Numerical Analysis, 58 (2) :515–544
2024
Herausgeber: EDP Sciences5208.
Ehrhardt, Matthias; Kruse, Thomas; Tordeux, Antoine
The collective dynamics of a stochastic port-Hamiltonian self-driven agent model in one dimension
ESAIM: Mathematical Modelling and Numerical Analysis, 58 (2) :515–544
2024
Herausgeber: EDP Sciences5207.
Rohde, Martin; Burgmann, Sebastian; Janoske, Uwe
The impact of a two-dimensional vibration excitation on the critical incident flow velocity of a sessile droplet
International Journal of Multiphase Flow, 171 :104663
2024
Herausgeber: Pergamon5206.
Reiter, Kendra; Schmidt, Marie; Stiglmayr, Michael
The Line-Based Dial-a-Ride Problem
In Bouman, Paul C. and Kontogiannis, Spyros C., Editor, 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)Band123ausOpen Access Series in Informatics (OASIcs), Seite 14:1—14:20
24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024). Open Access Series in Informatics (OASIcs)
In Bouman, Paul C. and Kontogiannis, Spyros C., Editor
Herausgeber: Schloss Dagstuhl — Leibniz-Zentrum für Informatik, Dagstuhl, Germany
20245205.
Villena, Guillermo; Lichtenberg, Nils; Lutz, Valerie; Jessen, Wilhelm; Klein, Andreas; Kurtenbach, Ralf; Kleffmann, Jörg
TunNOx: Development and testing of a photocatalytic reactor for efficient NOx-Abatement of Road-Tunnel exhaust
Chemical Engineering Journal, 490 :151832
Juni 2024
ISSN: 138589475204.
Kapllani, Lorenc; Teng, Long; Rottmann, Matthias
Uncertainty quantification for deep learning-based schemes for solving high-dimensional backward stochastic differential equations
Preprint IMACM
2024
Herausgeber: Bergische Universität Wuppertal5203.
[german] Zeller, Diana; Bohrmann-Linde, Claudia; Mack, Nils; Diekmann, Charlotte; Schrader, Claudia
Virtual Reality für den Chemieunterricht
Nachrichten aus der Chemie, 72 (6) :15-22
20245202.
Acu, Ana-Maria; Heilmann, Margareta; Raş, Ioan; Steopoaie, Ancuta Emilia
Voronovskaja type results for the Aldaz-Kounchev-Render versions of generalized Baskakov operators
Applicable Analysis and Discrete Mathematics :1-16
2024- 2023
5201.
Haussmann, N.; Stroka, S.; Mazaheri, S.; Clemens, M.
Using Point Clouds for Material Properties Smoothing in Low-Frequency Numerical Dosimetry Simulations
21st Biennial IEEE Conference on Electromagnetic Field Computation (CEFC 2024)
Jeju, South Korea
Dezember 20235200.
Kähne, B.; Clemens, M.
A GPU Accelerated Semi-Implicit Method for Large-Scale Nonlinear Eddy-Current Problems Using Adaptive Time Step Control
21st Biennial IEEE Conference on Electromagnetic Field Computation (CEFC 2024)
Jeju, South Korea
Dezember 20235199.
Gernandt, Hannes; Hinsen, Dorothea; Cherifi, Karim
The difference between port-Hamiltonian, passive and positive real descriptor systems
Mathematics of Control, Signals, and Systems
Dezember 20235198.
Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Voronovskaja formula for Aldaz–Kounchev–Render operators: uniform convergence
Analysis and Mathematical Physics, 14 (1)
Dezember 2023
ISSN: 1664-235X5197.
Stroka, S.; Kasolis, F.; Haussmann, N.; Clemens, M.
Efficient Low-Frequency Human Exposure Assessment with the Maximum Entropy Snapshot Sampling
21st Biennial IEEE Conference on Electromagnetic Field Computation (CEFC 2024)
Jeju, Korea
November 20235196.
Xuan, Mingjun; Fan, Jilin; Khiêm, Vu Ngoc; Zou, Miancheng; Brenske, Kai-Oliver; Mourran, Ahmed; Vinokur, Rostislav; Zheng, Lifei; Itskov, Mikhail; Göstl, Robert; Herrmann, Andreas
Polymer Mechanochemistry in Microbubbles
Advanced Materials, 35 (47) :2305130
November 2023
ISSN: 1521-40955195.
Stroka, S.; Haussmann, N.; Clemens, M.
Efficient Assessment of High-Resolution Low-Frequency Magnetic Field Exposure Scenarios Using Reduced Order Models
15th Scientific Computing in Electrical Engineering (SCEE 2024)
Darmstadt, Germany
November 20235194.
Alameddine, Jean-Marco; Albrecht, Johannes; Dembinski, Hans; Gutjahr, Pascal; Kampert, Karl-Heinz; Rhode, Wolfgang; Sackel, Maximilian; Sandrock, Alexander; Soedingrekso, Jan
Improvements in charged lepton and photon propagation for the software PROPOSAL
November 20235193.
[german] Grandrath, Rebecca
Videoschnitt für Einsteiger:innen
Unterricht Biologie - Das Schülerarbeitsheft, 51 :32-36
November 2023