Applied and Computational Mathematics (ACM)

Model Order Reduction

Model Order Reduction (MOR) is the art of reducing a system's complexity while preserving its input-output behavior as much as possible.

Processes in all fields of todays technological world, like physics, chemistry and electronics, but also in finance, are very often described by dynamical systems. With the help of these dynamical systems, computer simulations, i.e. virtual experiments, are carried out. In this way, new products can be designed without having to build costly prototyps.

Due to the demand of more and more realistic simulations, the dynamical systems, i.e., the mathematical models, have to reflect more and more details of the real world problem. By this, the models' dimensions are increasing and simulations can often be carried out at high computational cost only.

In the design process, however, results are needed quickly. In circuit design, e.g., structures may need to be changed or parameters may need to be altered, in order to satisfy design rules or meet the prescribed performance. One cannot afford idle time, waiting for long simulation runs to be ready.

Model Order Reduction allows to speed up simulations in cases where one is not interested in all details of a system but merely in its input-output behavior. That means, considering a system, one may ask:

  • How do varying parameters influence certain performances ?
    Using the example of circuit design: How do widths and lengths of transistor channels, e.g., influence the voltage gain of a circuit.
  • Is a system stable?
    Using the example of circuit design: In which frequency range, e.g., of voltage sources, does the circuit perform as expected
  • How do coupled subproblems interact?
    Using the example of circuit design: How are signals applied at input-terminals translated to output-pins?

Classical situations in circuit design, where one does not need to know internals of blocks are optimization of design parameters (widths, lengths, ...) and post layout simulations and full system verifications. In the latter two cases, systems of coupled models are considered. In post layout simulations one has to deal with artificial, parasitic circuits, describing wiring effects.

Model Order Reduction automatically captures the essential features of a structure, omitting information which are not decisive for the answer to the above questions. Model Order reduction replaces in this way a dynamical system with another dynamical system producing (almost) the same output, given the same input with less internal states.

MOR replaces high dimensional (e.g. millions of degrees of freedom) with low dimensional (e.g. a hundred of degrees of freedom ) problems, that are then used instead in the numerical simulation.

The working group "Applied Mathematics/Numerical Analysis" has gathered expertise in MOR, especially in circuit design. Within the EU-Marie Curie Initial Training Network COMSON, attention was concentrated on MOR for Differential Algebraic Equations. Members that have been working on MOR in the EU-Marie Curie Transfer of Knowledge project O-MOORE-NICE! gathered knowledge especially in the still immature field of MOR for nonlinear problems.

Current research topics include:

  • MOR for nonlinear, parameterized problems
  • structure preserving MOR
  • MOR for Differential Algebraic Equations
  • MOR in financial applications, i.e., option prizing

Group members working on that field

  • Jan ter Maten
  • Roland Pulch

Publications



1991

343.

Heilmann, Margareta; Müller, Manfred
Equivalence of a weighted modulus of smoothness and a modified weighted K-functional
In Nevai, P. and Pinkus, A., Editor
Herausgeber: Academic Press
1991

342.

Jensen, Per; Oddershede, Jens; Sabin, John R.
Geometric dependence of the mean excitation energy and spectral moments of water
Physical Review A, 43 (7) :4040-4043
1991

341.

Jensen, Per; Oddershede, Jens; Sabin, John R.
Geometric dependence of the mean excitation energy and spectral moments of water
Physical Review A, 43 (7) :4040-4043
1991

340.

Jensen, Per; Oddershede, Jens; Sabin, John R.
Geometric dependence of the mean excitation energy and spectral moments of water
Physical Review A, 43 (7) :4040-4043
1991

339.

Becker, Karl Heinz; Geiger, Harald; Wiesen, Peter
Kinetic study of the OH radical chain in the reaction system OH + C\(_{2}\)H\(_{4}\) + NO + air
Chemical Physics Letters, 184 (4) :256-261
1991

338.

Becker, Karl Heinz; Geiger, Harald; Wiesen, Peter
Kinetic study of the OH radical chain in the reaction system OH + C\(_{2}\)H\(_{4}\) + NO + air
Chemical Physics Letters, 184 (4) :256-261
1991

337.

Becker, Karl Heinz; Geiger, Harald; Wiesen, Peter
Kinetic study of the OH radical chain in the reaction system OH + C2H4 + NO + air
Chemical Physics Letters, 184 (4) :256-261
1991

336.

Wildt, J{ü}rgen; Bednarek, G.; Fink, Ewald H.; Wayne, Richard P.
Laser excitation of the A\(^{3}\)\(\Sigma\)\(_{u}\)\(^{+}\), A'\(^{3}\)\(\Delta\)\(_{u}\) and c\(^{1}\)\(\Sigma\)\(_{u}\)\(^{-}\) states of molecular oxygen
Chemical Physics, 156 (3) :497-508
1991

335.

Wildt, J{ü}rgen; Bednarek, G.; Fink, Ewald H.; Wayne, Richard P.
Laser excitation of the A\(^{3}\)\(\Sigma\)\(_{u}\)\(^{+}\), A'\(^{3}\)\(\Delta\)\(_{u}\) and c\(^{1}\)\(\Sigma\)\(_{u}\)\(^{-}\) states of molecular oxygen
Chemical Physics, 156 (3) :497-508
1991

334.

Wildt, Jürgen; Bednarek, G.; Fink, Ewald H.; Wayne, Richard P.
Laser excitation of the A3Σu+, A'3Δu and c1Σu- states of molecular oxygen
Chemical Physics, 156 (3) :497-508
1991

333.

Tausch, Michael W.
Legende oder nicht Legende?
Praxis der Naturwissenschaften (Chemie), 40 :44
1991

332.

Benter, Thorsten; Becker, Eilhard; Wille, Uta; Schindler, Ralph N.; Canosa-Mas, Carlos E.; Smith, Stuart J.; Waygood, Steven J.; Wayne, Richard P.
Nitrate radical reactions: interactions with alkynes
Journal of the Chemical Society, Faraday Transactions, 87 (14) :2141
1991

331.

Benter, Thorsten; Becker, Eilhard; Wille, Uta; Schindler, Ralph N.; Canosa-Mas, Carlos E.; Smith, Stuart J.; Waygood, Steven J.; Wayne, Richard P.
Nitrate radical reactions: interactions with alkynes
Journal of the Chemical Society, Faraday Transactions, 87 (14) :2141
1991

330.

Benter, Thorsten; Becker, Eilhard; Wille, Uta; Schindler, Ralph N.; Canosa-Mas, Carlos E.; Smith, Stuart J.; Waygood, Steven J.; Wayne, Richard P.
Nitrate radical reactions: interactions with alkynes
Journal of the Chemical Society, Faraday Transactions, 87 (14) :2141
1991

329.

[german] Tausch, Michael W.
Photochemie - aktuelle Bedeutung und Möglichkeiten der Integration in den Chemieunterricht
Praxis der Naturwissenschaften (Chemie), 40 (4) :2
1991

328.

Becker, Karl Heinz; Kurtenbach, Ralf; Wiesen, Peter
Temperature and pressure dependence of the reaction methylidyne radical + hydrogen
The Journal of Physical Chemistry, 95 (6) :2390-2394
1991

327.

Becker, Karl Heinz; Kurtenbach, Ralf; Wiesen, Peter
Temperature and pressure dependence of the reaction methylidyne radical + hydrogen
The Journal of Physical Chemistry, 95 (6) :2390-2394
1991

326.

Becker, Karl Heinz; Kurtenbach, Ralf; Wiesen, Peter
Temperature and pressure dependence of the reaction methylidyne radical + hydrogen
The Journal of Physical Chemistry, 95 (6) :2390-2394
1991

325.

Bunker, Philip R.; Jensen, Per; Karpfen, Alfred
The \(\nu\)\(_{1}\) + \(\nu\)\(_{2}\) = 4 stretching overtones of the HF dimer, and H-atom exchange
Journal of Molecular Spectroscopy, 149 (2) :512-518
1991

324.

Bunker, Philip R.; Jensen, Per; Karpfen, Alfred
The \(\nu\)\(_{1}\) + \(\nu\)\(_{2}\) = 4 stretching overtones of the HF dimer, and H-atom exchange
Journal of Molecular Spectroscopy, 149 (2) :512-518
1991

323.

Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.
The X\(_{2}\)\(^{2}\)\(\Pi\)\(_{1/2}\) → X\(_{1}\)\(^{2}\)\(\Pi\)\(_{3/2}\) electronic transitions of tellurium monohalides in the near infrared
Chemical Physics Letters, 177 (3) :265-268
1991

322.

Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.
The X\(_{2}\)\(^{2}\)\(\Pi\)\(_{1/2}\) → X\(_{1}\)\(^{2}\)\(\Pi\)\(_{3/2}\) electronic transitions of tellurium monohalides in the near infrared
Chemical Physics Letters, 177 (3) :265-268
1991

321.

Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.
The X\(_{2}\)1 → X\(_{1}\)0\(^{+}\) electronic band systems of bismuth monohalides in the near infrared
Chemical Physics Letters, 179 (1-2) :95-102
1991

320.

Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.
The X\(_{2}\)1 → X\(_{1}\)0\(^{+}\) electronic band systems of bismuth monohalides in the near infrared
Chemical Physics Letters, 179 (1-2) :95-102
1991

319.

Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.
The X22Π1/2 → X12Π3/2 electronic transitions of tellurium monohalides in the near infrared
Chemical Physics Letters, 177 (3) :265-268
1991