Coupled DAE Problems
Coupled Problems of differential-algebraic equations (DAEs) arise typically from either multiphysical modeling (e.g. in circuit simulation with heating) or from refined modeling, where crucial parts of the original problem are replaced by a better, but computational more expensive model (e.g. circuits refined by field models). Furthermore splitting methods may turn a monolithic DAE problem into coupled subproblems, e.g. because of different time scales (multirate). In any case the DAEs arise from network approaches or space-discretization of PDAEs (Partial Differential Algebraic Equations).
Often the coupled equations have quite different properties, i.e., symmetries, definiteness or time scales. Thus the coupled system must be analyzed (e.g. the index) and tailored methods have to be developed (e.g. dynamic iteration).
Details
Publications
5002.
Ehrhardt, Matthias; Günther, Michael; Brunner, H; Dalhoff, A
Mathematical Modelling of Dengue Fever Epidemics5001.
Ehrhardt, Matthias; Günther, Michael; Brunner, H; Dalhoff, A
Mathematical Modelling of Dengue Fever Epidemics5000.
Ehrhardt, Matthias; Brunner, H
Mathematical Modelling of Monkeypox Epidemics4999.
Ehrhardt, Matthias; Brunner, H
Mathematical Modelling of Monkeypox Epidemics4998.
Ehrhardt, Matthias; Günther, Michael; Brunner, H
Mathematical Study of Grossman's model of investment in health capital4997.
Ehrhardt, Matthias; Günther, Michael; Brunner, H
Mathematical Study of Grossman's model of investment in health capital4996.
Silva, JP; Maten, J; Günther, M; Ehrhardt, M
Model Order Reduction Techniques for Basket Option Pricing4995.
Putek, Piotr; PAPLICKI, Piotr; Pulch, Roland; Maten, Jan; Günther, Michael; PA{\L}KA, Ryszard
NONLINEAR MULTIOBJECTIVE TOPOLOGY OPTIMIZATION AND MULTIPHYSICS ANALYSIS OF A PERMANENT-MAGNET EXCITED SYNCHRONOUS MACHINE4994.
Silva, JP; Maten, J; Günther, M; Ehrhardt, M
Model Order Reduction Techniques for Basket Option Pricing4993.
Ehrhardt, Matthias; Günther, Michael
Modelling Stochastic Correlations in Finance4992.
Ehrhardt, Matthias; Günther, Michael
Modelling Stochastic Correlations in Finance4991.
Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit; Bartel, PD Dr Andreas; Maten, Jan
Modelling, Analysis and Simulation with Port-Hamiltonian Systems4990.
Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit; Bartel, PD Dr Andreas; Maten, Jan
Modelling, Analysis and Simulation with Port-Hamiltonian Systems4989.
Maten, E Jan W; Ehrhardt, Matthias
MS40: Computational methods for finance and energy markets
19th European Conference on Mathematics for Industry, Seite 3774988.
Maten, E Jan W; Ehrhardt, Matthias
MS40: Computational methods for finance and energy markets
19th European Conference on Mathematics for Industry, Seite 377- 2024
4987.
Schaefers, Kevin; Peardon, Michael; Guenther, Michael
A modified Cayley transform for SU(3)
20244986.
Ackermann, Julia; Ehrhardt, Matthias; Kruse, Thomas; Tordeux, Antoine
Stabilisation of stochastic single-file dynamics using port-Hamiltonian systems
arXiv preprint arXiv:2401.17954
20244985.
Bartel, A.; Diab, M.; Frommer, A.; G\"unther ; Marheineke, N.
Splitting Techniques for DAEs with port-Hamiltonian Applications
20244984.
Schäfers, Kevin; Finkenrath, Jacob; Günther, Michael; Knechtli, Francesco
Hessian-free force-gradient integrators
Preprint
20244983.
[german] Zeller, Diana; Bohrmann-Linde, Claudia
Falschinformationen in Videos? Mit dem Konzept KriViNat die Kompetenz der Informationsbewertung stärken
In Bohrmann-Linde, C.; Gökkus, Y.; Meuter, N.; Zeller, D., Editor, Band Netzwerk Digitalisierter Chemieunterricht. Sammelband NeDiChe-Treff 2022
Seite 9-15
Herausgeber: Chemiedidaktik. Bergische Universität Wuppertal
2024
9-154982.
Fasi, Massimiliano; Gaudreault, Stéphane; Lund, Kathryn; Schweitzer, Marcel
Challenges in computing matrix functions
20244981.
Bailo, Rafael; Barbaro, Alethea; Gomes, Susana N.; Riedl, Konstantin; Roith, Tim; Totzeck, Claudia; Vaes, Urbain
CBX: Python and Julia packages for consensus-based interacting particle methods
20244980.
Bartel, Andreas; Schaller, Manuel
Goal-oriented time adaptivity for port-{H}amiltonian systems
20244979.
Bartel, Andreas; Schaller, Manuel
Goal-oriented time adaptivity for port-Hamiltonian systems
Preprint
20244978.
Klass, Friedemann; Bartel, Andreas; Gabbana, PD Alessandro
Boundary conditions for multi-speed lattice Boltzmann methods
Universitätsbibliothek
2024