Multirate
Highly integrated electric cicuits show a phenomenon called latency. That is, a processed signal causes activity only in a small subset of the whole circuit (imagine a central processing unit), whereas the other part of the system behaves almost constant over some time - is latent. Such an electric system can be described as coupled system, where the waveforms show different time scales, also refered to as multirate.
More generally, any coupled problem formulation due to coupled physical effects, may cause a multirate problem: image the simulation of car driving on the road, there you need a model for the wheel, the chassis, the dampers, the road,... (cf. co-simulation). Again each system is covered by their own time constant, which might vary over several orders of magnitude comparing different subsystems.
Classical methods cannot exploit this multirate potential, but resolve everything on the finest scale. This causes an over sampling of the latent components. In constrast, Co-simulation or especially dedicated multirate methods are designed to use the inherent step size to resolve the time-domain behaviour of each subystem with the required accuracy. This requires a time-stepping for each.
Group members working in that field
- Andreas Bartel
- Michael Günther
Former and ongoing Projects
Cooperations
- Herbert de Gersem, K.U. Leuven, Belgium
- Jan ter Maten, TU Eindhoven and NXP, the Netherlands
Publications
- 1986
179.
Maten, E. Jan W.; Sleijpen, Gerard L. G.
A convergence analysis of Hopscotch methods for fourth order parabolic equations
Numerische Mathematik, 49 (2-3) :275--290
März 1986
Herausgeber: Springer Science and Business Media {LLC}178.
Jensen, Per; Spirko, Vladim{í}r
A new Morse-oscillator based Hamiltonian for H\(_{3}\)\(^{+}\): Calculation of line strengths
Journal of Molecular Spectroscopy, 118 (1) :208-231
1986177.
Jensen, Per; Spirko, Vladim{í}r
A new Morse-oscillator based Hamiltonian for H\(_{3}\)\(^{+}\): Calculation of line strengths
Journal of Molecular Spectroscopy, 118 (1) :208-231
1986176.
Jensen, Per; Spirko, Vladim{í}r; Bunker, Philip R.
A new Morse-oscillator based Hamiltonian for H\(_{3}\)\(^{+}\): Extension to H\(_{2}\)D\(^{+}\) and D\(_{2}\)H\(^{+}\)
Journal of Molecular Spectroscopy, 115 (2) :269-293
1986175.
Jensen, Per; Spirko, Vladim{í}r; Bunker, Philip R.
A new Morse-oscillator based Hamiltonian for H\(_{3}\)\(^{+}\): Extension to H\(_{2}\)D\(^{+}\) and D\(_{2}\)H\(^{+}\)
Journal of Molecular Spectroscopy, 115 (2) :269-293
1986174.
Jensen, Per; Spirko, Vladimír
A new Morse-oscillator based Hamiltonian for H3+: Calculation of line strengths
Journal of Molecular Spectroscopy, 118 (1) :208-231
1986173.
Jensen, Per; Spirko, Vladimír; Bunker, Philip R.
A new Morse-oscillator based Hamiltonian for H3+: Extension to H2D+ and D2H+
Journal of Molecular Spectroscopy, 115 (2) :269-293
1986172.
Adams, Warren P; Sherali, Hanif D
A tight linearization and an algorithm for zero-one quadratic programming problems
Management Science, 32 (10) :1274--1290
1986
Herausgeber: INFORMS171.
Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
Ab initio rotation-vibration energies of HOC\(^{+}\) calculated using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 118 (1) :40-49
1986170.
Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
Ab initio rotation-vibration energies of HOC\(^{+}\) calculated using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 118 (1) :40-49
1986169.
Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
Ab initio rotation-vibration energies of HOC+ calculated using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 118 (1) :40-49
1986168.
Kraemer, Wolfgang P.; Roos, B. O.; Bunker, Philip R.; Jensen, Per
An ab initio calculation of the rotation-vibration energies of the state of CCH using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 120 (1) :236-238
1986167.
Kraemer, Wolfgang P.; Roos, B. O.; Bunker, Philip R.; Jensen, Per
An ab initio calculation of the rotation-vibration energies of the state of CCH using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 120 (1) :236-238
1986166.
Kraemer, Wolfgang P.; Roos, B. O.; Bunker, Philip R.; Jensen, Per
An ab initio calculation of the rotation-vibration energies of the state of CCH using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 120 (1) :236-238
1986165.
Fink, Ewald H.; Kruse, H.; Ramsay, D. A.; Vervloet, M.
An electric quadrupole transition: the emission system of oxygen
Canadian Journal of Physics, 64 (3) :242-245
1986
Herausgeber: NRC Research Press Ottawa, Canada164.
Fink, Ewald H.; Kruse, H.; Ramsay, D. A.; Vervloet, M.
An electric quadrupole transition: the emission system of oxygen
Canadian Journal of Physics, 64 (3) :242-245
1986
Herausgeber: NRC Research Press Ottawa, Canada163.
Fink, Ewald H.; Kruse, H.; Ramsay, D. A.; Vervloet, M.
An electric quadrupole transition: the emission system of oxygen
Canadian Journal of Physics, 64 (3) :242-245
1986
Herausgeber: NRC Research Press Ottawa, Canada162.
Jensen, Per; Winnewisser, Manfred
Prediction of higher inversion energy levels for isocyanamide H\(_{2}\)NNC
Collection of Czechoslovak Chemical Communications, 51 (7) :1373-1381
1986
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.161.
Jensen, Per; Winnewisser, Manfred
Prediction of higher inversion energy levels for isocyanamide H\(_{2}\)NNC
Collection of Czechoslovak Chemical Communications, 51 (7) :1373-1381
1986
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.160.
Jensen, Per; Winnewisser, Manfred
Prediction of higher inversion energy levels for isocyanamide H2NNC
Collection of Czechoslovak Chemical Communications, 51 (7) :1373-1381
1986
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.159.
Bielefeld, M.; Wildt, J{ü}rgen; Fink, Ewald H.
Rate constants of the near-resonant E-E energy exchange processes SeS(b0\(^{+}\)) + O\(_{2}\)(X\(^{3}\)\(\Sigma\)\(_{g}\)\(^{-}\)) ↔ SeS(X\(_{1}\)0\(^{+}\)) + O\(_{2}\)(a\(^{1}\)\(\Delta\)\(_{g}\))
Chemical Physics Letters, 126 (5) :421-426
1986158.
Bielefeld, M.; Wildt, J{ü}rgen; Fink, Ewald H.
Rate constants of the near-resonant E-E energy exchange processes SeS(b0\(^{+}\)) + O\(_{2}\)(X\(^{3}\)\(\Sigma\)\(_{g}\)\(^{-}\)) ↔ SeS(X\(_{1}\)0\(^{+}\)) + O\(_{2}\)(a\(^{1}\)\(\Delta\)\(_{g}\))
Chemical Physics Letters, 126 (5) :421-426
1986157.
Bielefeld, M.; Wildt, Jürgen; Fink, Ewald H.
Rate constants of the near-resonant E-E energy exchange processes SeS(b0+) + O2(X3Σg-) ↔ SeS(X10+) + O2(a1Δg)
Chemical Physics Letters, 126 (5) :421-426
1986156.
Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
Rotation-vibration energy levels of H\(_{2}\)O and C\(_{3}\) calculated using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 118 (1) :50-63
1986155.
Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
Rotation-vibration energy levels of H\(_{2}\)O and C\(_{3}\) calculated using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 118 (1) :50-63
1986