Applied and Computational Mathematics (ACM)

Multirate Partial Differential Algebraic Equations

In radio frequency (RF) applications, electric circuits produce signals exhibiting fast oscillations, whereas the amplitude and/or frequency change slowly in time. Thus, solving a system of differential algebraic equations (DAEs), which describes the circuit's transient behaviour, becomes inefficient, since the fast rate restricts the step sizes in time. A multivariate model is able to decouple the widely separated time scales of RF signals and provides an alternative approach. Consequently, a system of DAEs changes into a system of multirate partial differential algebraic equations (MPDAEs). The determination of multivariate solutions allows for the exact reconstruction of corresponding time-dependent signals. Hence, an efficient numerical simulation is obtained by exploiting the periodicities in fast time scales. On the one hand, the simulation of enveloppe-modulated signals requires the solution of initial-boundary value problems of the MPDAEs. On the other hand, the simulation of quasiperiodic signals implies multiperiodic boundary conditions only for the MPDAEs. In case of quasiperiodic signals, a method of characteristics solves the multirate model efficiently, since the system of partial differential algebraic equations exhibits a hyperbolic structure.

Publications



2023

5135.

Schäfers, Torben; Teng, Long
Asymmetry in stochastic volatility models with threshold and time-dependent correlation
Studies in Nonlinear Dynamics & Econometrics, 27 (2) :131–146
2023
Herausgeber: De Gruyter

5134.

Hastir, Anthony; Hosfeld, René; Schwenninger, Felix L.; Wierzba, Alexander A.
BIBO stability for funnel control: semilinear internal dynamics with unbounded input and output operators
2023

5133.

Gorski, Jochen; Klamroth, Kathrin; Sudhoff, Julia
Biobjective optimization problems on matroids with binary costs
Optimization, 72 (7) :1931-1960
2023
Herausgeber: Taylor & Francis

5132.

[german] Grandrath, Rebecca
CapCut – intuitive und vollständige Videobearbeitung
:1-2
2023
Herausgeber: Friedrich-Schiller-Universität Jena, Institut für Anorganische und Analytische Chemie

5131.

Hosfeld, René; Jacob, Birgit; Schwenninger, Felix L.
Characterization of Orlicz admissibility
Semigroup Forum, 106 :633–661
2023

5130.

Bohrmann-Linde, Claudia; Siehr, Ilona
Chemie Qualifikationsphase Nordrhein-Westfalen
Herausgeber: C.C.Buchner Verlag, Bamberg
2023

ISBN: 978-3-661-06002-6

5129.

Albrecht, Johannes; others
Comparison and efficiency of GPU accelerated optical light propagation in CORSIKA\textasciitilde{}8
PoS, ICRC2023 :417
2023

5128.

Carrillo, Jose Antonio; Totzeck, Claudia; Vaes, Urbain
Consensus-based Optimization and Ensemble Kalman Inversion for Global Optimization Problems with Constraints
, Modeling and Simulation for Collective Dynamics,Lecture Notes Series, Institute for Mathematical Sciences, NUS Band 40
2023

5127.

Halim, A. Abdul; others
Constraining the sources of ultra-high-energy cosmic rays across and above the ankle with the spectrum and composition data measured at the Pierre Auger Observatory
JCAP, 05 :024
2023

5126.

Yue, Baobiao; others
Constraints on BSM particles from the absence of upward-going air showers in the Pierre Auger Observatory
PoS, ICRC2023 :1095
2023

5125.

Abdul Halim, Adila; others
Constraints on UHECR characteristics from cosmogenic neutrino limits with the measurements of the Pierre Auger Observatory
PoS, ICRC2023 :1520
2023

5124.

Abdul Halim, Adila; others
Constraints on upward-going air showers using the Pierre Auger Observatory data
PoS, ICRC2023 :1099
2023

5123.

Acu, Ana-Maria; Heilmann, Margareta; Raşa, Ioan; Seserman, Andra
Convergence of linking Durrmeyer type modifications of generalized Baskakov operators
Bulletin of the Malaysian Math. Sciences Society, 46 (3)
2023

5122.

Jacob, Birgit; Mironchenko, Andrii; Partington, Jonathan R.; Wirth, Fabian
Corrigendum: Noncoercive Lyapunov functions for input-to-state stability of infinite-dimensional systems
SIAM J. Control Optim., 61 (2) :723-724
2023

5121.

Aerdker, S.; others
CRPropa 3.2: a public framework for high-energy astroparticle simulations
PoS, ICRC2023 :1471
2023

5120.

Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain
arXiv preprint arXiv:2301.03924
2023

5119.

Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Deep FDM: Enhanced finite difference methods by deep learning
Franklin Open, 4 :100039
2023
Herausgeber: Elsevier

5118.

Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Deep FDM: Enhanced finite difference methods by deep learning
Franklin Open, 4 :100039
2023
Herausgeber: Elsevier

5117.

Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Deep FDM: Enhanced finite difference methods by deep learning
Franklin Open, 4 :100039
2023
Herausgeber: Elsevier

5116.

Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Deep finite difference method for solving Asian option pricing problems
Preprint IMACM
2023
Herausgeber: Bergische Universität Wuppertal

5115.

Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Deep finite difference method for solving Asian option pricing problems
Preprint IMACM
2023
Herausgeber: Bergische Universität Wuppertal

5114.

Kapllani, Lorenc; Teng, Long
Deep Learning algorithms for solving high-dimensional nonlinear Backward Stochastic Differential Equations
Discrete Contin. Dyn. Syst. - B
2023
ISSN: 1531-3492

5113.

Kapllani, Lorenc; Teng, Long
Deep Learning algorithms for solving high-dimensional nonlinear backward stochastic differential equations
Discrete Contin. Dyn. Syst. - B
2023

5112.

Ackermann, Julia; Jentzen, Arnulf; Kruse, Thomas; Kuckuck, Benno; Padgett, Joshua Lee
Deep neural networks with ReLU, leaky ReLU, and softplus activation provably overcome the curse of dimensionality for Kolmogorov partial differential equations with Lipschitz nonlinearities in the $L^p$-sense
2023

5111.

Ackermann, Julia; Jentzen, Arnulf; Kruse, Thomas; Kuckuck, Benno; Padgett, Joshua Lee
Deep neural networks with ReLU, leaky ReLU, and softplus activation provably overcome the curse of dimensionality for Kolmogorov partial differential equations with Lipschitz nonlinearities in the Lp-sense
Preprint
2023