Applied and Computational Mathematics (ACM)

Index Analysis

DAEs are no ODEs. Actually, Differential agebraic equations (DAEs) are a mixture of ordinary differential equations (ODEs) and algebraic relations. This may create difficulties, which are not seen at the first sight. The analysis shows that due this mixture hidden differentiation might occur. Recalling from analysis that differentiation is not an unbounded operator, such a process is much more difficult to handle than the integrals used for solving ODEs. E.g. imagine a sinosoidal signal of small amplitude but with high frequency, such as a numerical error, the derivative is of much larger magnitude.

Clearly, the more derivatives involved in the exact solution of a DAE, the more one needs to be careful in numerical computations. The index is a measure for this difficutly. That is why it is important to know the index before simulation.

Group members working on that field

  • Andreas Bartel
  • Michael Günther

 

Cooperations

  • Giuseppe Ali (Academia)
  • Sascha Baumanns (Academia)
  • Caren Tischendorf (Academia)

Publications



2023

5141.

Halim, A. Abdul; others
Constraining the sources of ultra-high-energy cosmic rays across and above the ankle with the spectrum and composition data measured at the Pierre Auger Observatory
JCAP, 05 :024
2023

5140.

Yue, Baobiao; others
Constraints on BSM particles from the absence of upward-going air showers in the Pierre Auger Observatory
PoS, ICRC2023 :1095
2023

5139.

Abdul Halim, Adila; others
Constraints on UHECR characteristics from cosmogenic neutrino limits with the measurements of the Pierre Auger Observatory
PoS, ICRC2023 :1520
2023

5138.

Abdul Halim, Adila; others
Constraints on upward-going air showers using the Pierre Auger Observatory data
PoS, ICRC2023 :1099
2023

5137.

Acu, Ana-Maria; Heilmann, Margareta; Raşa, Ioan; Seserman, Andra
Convergence of linking Durrmeyer type modifications of generalized Baskakov operators
Bulletin of the Malaysian Math. Sciences Society, 46 (3)
2023

5136.

Jacob, Birgit; Mironchenko, Andrii; Partington, Jonathan R.; Wirth, Fabian
Corrigendum: Noncoercive Lyapunov functions for input-to-state stability of infinite-dimensional systems
SIAM J. Control Optim., 61 (2) :723-724
2023

5135.

Aerdker, S.; others
CRPropa 3.2: a public framework for high-energy astroparticle simulations
PoS, ICRC2023 :1471
2023

5134.

Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain
arXiv preprint arXiv:2301.03924
2023

5133.

Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Deep FDM: Enhanced finite difference methods by deep learning
Franklin Open, 4 :100039
2023
Herausgeber: Elsevier

5132.

Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Deep FDM: Enhanced finite difference methods by deep learning
Franklin Open, 4 :100039
2023
Herausgeber: Elsevier

5131.

Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Deep FDM: Enhanced finite difference methods by deep learning
Franklin Open, 4 :100039
2023
Herausgeber: Elsevier

5130.

Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Deep finite difference method for solving Asian option pricing problems
Preprint IMACM
2023
Herausgeber: Bergische Universität Wuppertal

5129.

Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Deep finite difference method for solving Asian option pricing problems
Preprint IMACM
2023
Herausgeber: Bergische Universität Wuppertal

5128.

Kapllani, Lorenc; Teng, Long
Deep Learning algorithms for solving high-dimensional nonlinear Backward Stochastic Differential Equations
Discrete Contin. Dyn. Syst. - B
2023
ISSN: 1531-3492

5127.

Kapllani, Lorenc; Teng, Long
Deep Learning algorithms for solving high-dimensional nonlinear backward stochastic differential equations
Discrete Contin. Dyn. Syst. - B
2023

5126.

Ackermann, Julia; Jentzen, Arnulf; Kruse, Thomas; Kuckuck, Benno; Padgett, Joshua Lee
Deep neural networks with ReLU, leaky ReLU, and softplus activation provably overcome the curse of dimensionality for Kolmogorov partial differential equations with Lipschitz nonlinearities in the $L^p$-sense
2023

5125.

Ackermann, Julia; Jentzen, Arnulf; Kruse, Thomas; Kuckuck, Benno; Padgett, Joshua Lee
Deep neural networks with ReLU, leaky ReLU, and softplus activation provably overcome the curse of dimensionality for Kolmogorov partial differential equations with Lipschitz nonlinearities in the Lp-sense
Preprint
2023

5124.

Ackermann, Julia; Jentzen, Arnulf; Kruse, Thomas; Kuckuck, Benno; Padgett, Joshua Lee
Deep neural networks with ReLU, leaky ReLU, and softplus activation provably overcome the curse of dimensionality for Kolmogorov partial differential equations with Lipschitz nonlinearities in the Lp-sense
Preprint
2023

5123.

Abdul Halim, Adila; others
Deep-Learning-Based Cosmic-Ray Mass Reconstruction Using the Water-Cherenkov and Scintillation Detectors of AugerPrime
PoS, ICRC2023 :371
2023

5122.

Kowol, Philipp; Bargmann, Swantje; Görrn, Patrick; Wilmers, Jana
Delamination Behavior of Highly Stretchable Soft Islands Multi-Layer Materials
Applied Mechanics, 4 (2) :514--527
2023
ISSN: 2673-3161

5121.

Ehrhardt, Matthias; Matyokubov, Kh Sh
Driven transparent quantum graphs
Preprint
2023

5120.

Ehrhardt, Matthias; Matyokubov, Kh Sh
Driven transparent quantum graphs
Preprint
2023

5119.

Felpel, Mike; Kienitz, Jörg; McWalter, Thomas
Effective stochastic local volatility models
Quantitative Finance, 23 (12) :1731–1750
2023
Herausgeber: Routledge

5118.

Klamroth, Kathrin; Lang, Bruno; Stiglmayr, Michael
Efficient Dominance Filtering for Unions and Minkowski Sums of Non-Dominated Sets
Computers and Operations Research
2023
Herausgeber: Elsevier {BV}

5117.

Di Persio, Luca; Ehrhardt, Matthias
Electricity price forecasting via statistical and deep learning approaches: The German case
AppliedMath, 3 (2) :316–342
2023
Herausgeber: MDPI