Applied and Computational Mathematics (ACM)

Index Analysis

DAEs are no ODEs. Actually, Differential agebraic equations (DAEs) are a mixture of ordinary differential equations (ODEs) and algebraic relations. This may create difficulties, which are not seen at the first sight. The analysis shows that due this mixture hidden differentiation might occur. Recalling from analysis that differentiation is not an unbounded operator, such a process is much more difficult to handle than the integrals used for solving ODEs. E.g. imagine a sinosoidal signal of small amplitude but with high frequency, such as a numerical error, the derivative is of much larger magnitude.

Clearly, the more derivatives involved in the exact solution of a DAE, the more one needs to be careful in numerical computations. The index is a measure for this difficutly. That is why it is important to know the index before simulation.

Group members working on that field

  • Andreas Bartel
  • Michael Günther

 

Cooperations

  • Giuseppe Ali (Academia)
  • Sascha Baumanns (Academia)
  • Caren Tischendorf (Academia)

Publications



1983

67.

Jensen, Per
The nonrigid bender Hamiltonian for calculating the rotation-vibration energy levels of a triatomic molecule
Computer Physics Reports, 1 (1) :1-55
1983

66.

Jensen, Per
The nonrigid bender Hamiltonian for calculating the rotation-vibration energy levels of a triatomic molecule
Computer Physics Reports, 1 (1) :1-55
1983

65.

Holstein, K. J.; Fink, Ewald H.; Zabel, Friedhelm
The ν3 vibration of electronically excited HO2(A2A')
Journal of Molecular Spectroscopy, 99 (1) :231-234
1983
1982

64.

Winter, R.; Barnes, Ian; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) and a\(^{1}\)\(\Delta\) emissions from group VI-VI diatomic molecules b0\(_{g}\)\(^{+}\) → X\(^{2}\)1\(_{g}\) emissions of Se\(_{2}\) and Te\(_{2}\)
Chemical Physics Letters, 86 (2) :118-122
1982

63.

Winter, R.; Barnes, Ian; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) and a\(^{1}\)\(\Delta\) emissions from group VI-VI diatomic molecules b0\(_{g}\)\(^{+}\) → X\(^{2}\)1\(_{g}\) emissions of Se\(_{2}\) and Te\(_{2}\)
Chemical Physics Letters, 86 (2) :118-122
1982

62.

Winter, R.; Barnes, Ian; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) and a\(^{1}\)\(\Delta\) emissions from group VI-VI diatomic molecules: b0\(^{+}\) → X\(_{1}\)0\(^{+}\), X\(_{2}\)1 emissions of TeO and TeS
Journal of Molecular Structure, 80 :75-82
1982

61.

Winter, R.; Barnes, Ian; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) and a\(^{1}\)\(\Delta\) emissions from group VI-VI diatomic molecules: b0\(^{+}\) → X\(_{1}\)0\(^{+}\), X\(_{2}\)1 emissions of TeO and TeS
Journal of Molecular Structure, 80 :75-82
1982

60.

Kruse, H.; Winter, R.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) emissions from group V-VII diatomic molecules: b0\(^{+}\) → X\(_{1}\)0\(^{+}\), X\(_{2}\)0\(^{+}\) emissions of SbBr
Chemical Physics Letters, 93 (5) :475-479
1982

59.

Kruse, H.; Winter, R.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) emissions from group V-VII diatomic molecules: b0\(^{+}\) → X\(_{1}\)0\(^{+}\), X\(_{2}\)0\(^{+}\) emissions of SbBr
Chemical Physics Letters, 93 (5) :475-479
1982

58.

Winter, R.; Barnes, Ian; Fink, Ewald H.; Wildt, Jürgen; Zabel, Friedhelm
b1Σ+ and a1Δ emissions from group VI-VI diatomic molecules b0g+ → X21g emissions of Se2 and Te2
Chemical Physics Letters, 86 (2) :118-122
1982

57.

Winter, R.; Barnes, Ian; Fink, Ewald H.; Wildt, Jürgen; Zabel, Friedhelm
b1Σ+ and a1Δ emissions from group VI-VI diatomic molecules: b0+ → X10+, X21 emissions of TeO and TeS
Journal of Molecular Structure, 80 :75-82
1982

56.

Kruse, H.; Winter, R.; Fink, Ewald H.; Wildt, Jürgen; Zabel, Friedhelm
b1Σ+ emissions from group V-VII diatomic molecules: b0+ → X10+, X20+ emissions of SbBr
Chemical Physics Letters, 93 (5) :475-479
1982

55.

Tausch, Michael W.
Modelle im Chemieunterricht
Der mathematische und naturwissenschaftliche Unterricht (MNU), 35 :226
1982

54.

Becker, Karl Heinz; Horie, O.; Schmidt, V. H.; Wiesen, Peter
Spectroscopic identification of C\(_{2}\)O radicals in the C\(_{3}\)O\(_{2}\) + O flame system by laser-induced fluorescence
Chemical Physics Letters, 90 (1) :64-68
1982

53.

Becker, Karl Heinz; Horie, O.; Schmidt, V. H.; Wiesen, Peter
Spectroscopic identification of C\(_{2}\)O radicals in the C\(_{3}\)O\(_{2}\) + O flame system by laser-induced fluorescence
Chemical Physics Letters, 90 (1) :64-68
1982

52.

Becker, Karl Heinz; Horie, O.; Schmidt, V. H.; Wiesen, Peter
Spectroscopic identification of C2O radicals in the C3O2 + O flame system by laser-induced fluorescence
Chemical Physics Letters, 90 (1) :64-68
1982

51.

Jensen, Per; Brodersen, Svend
The \(\nu\)\(_{5}\) Raman band of CH\(_{3}\)CD\(_{3}\)
Journal of Raman Spectroscopy, 12 (3) :295-299
1982

50.

Jensen, Per; Brodersen, Svend
The \(\nu\)\(_{5}\) Raman band of CH\(_{3}\)CD\(_{3}\)
Journal of Raman Spectroscopy, 12 (3) :295-299
1982

49.

Jensen, Per; Bunker, Philip R.; Hoy, A. R.
The equilibrium geometry, potential function, and rotation?vibration energies of CH\(_{2}\) in the X\verb=~=\(^{3}\)B\(_{1}\) ground state
The Journal of Chemical Physics, 77 (11) :5370-5374
1982

48.

Jensen, Per; Bunker, Philip R.; Hoy, A. R.
The equilibrium geometry, potential function, and rotation?vibration energies of CH\(_{2}\) in the X\verb=~=\(^{3}\)B\(_{1}\) ground state
The Journal of Chemical Physics, 77 (11) :5370-5374
1982

47.

Jensen, Per; Bunker, Philip R.; Hoy, A. R.
The equilibrium geometry, potential function, and rotation?vibration energies of CH2 in the X~3B1 ground state
The Journal of Chemical Physics, 77 (11) :5370-5374
1982

46.

Jensen, Per; Bunker, Philip R.
The geometry and the inversion potential function of formaldehyde in the and electronic states
Journal of Molecular Spectroscopy, 94 (1) :114-125
1982

45.

Jensen, Per; Bunker, Philip R.
The geometry and the inversion potential function of formaldehyde in the and electronic states
Journal of Molecular Spectroscopy, 94 (1) :114-125
1982

44.

Jensen, Per; Bunker, Philip R.
The geometry and the inversion potential function of formaldehyde in the and electronic states
Journal of Molecular Spectroscopy, 94 (1) :114-125
1982

43.

Jensen, Per; Bunker, Philip R.
The geometry and the out-of-plane bending potential function of thioformaldehyde in the A\verb=~=\(^{1}\)A\(_{2}\) and a\verb=~=\(^{3}\)A\(_{2}\) electronic states
Journal of Molecular Spectroscopy, 95 (1) :92-100
1982