Dynamic Iteration Schemes

Dynamic iteration via source coupling
Standard time-integration methods solve transient problems all at once. This may become very inefficient or impossible for large systems of equations. Imaging that such large systems often stem from a coupled problem formulation, where different physical phenomena interact and need to be coupled in order to produce a precise mathematical model.
E.g. highly integrated electric circuits (as in memory chips or CPUs) produce heat, which effects in turn their behavior as electrical system; thus one needs to couple electric and thermal subproblem descriptions. On the one hand, this creates multiple time scales due to different physical phenomena, which demands an efficient treatment, see multirate. On the other hand, in a professional environment one usually has dedicated solvers for the subproblems, which need to be used, and an overall problem formulation is not feasible for any of the involved tools.
For those partitioned problems a dynamic iteration method becomes beneficial or even the sole way-out: it keeps the subproblems separate, solves subproblems sequentially (or in parallel) and iterates until convergence (fixed-point interation). Thus the subproblem's structure can be exploited in the respective integration.
To guarantee or to speed up convergence the time interval of interest is split into a series of windows. Then the time-integration of the windows is applied sequentially and in each window the subproblems are solved iteratively by your favoured method.
Group members working on that field
- Andreas Bartel
- Michael Günther
Former and ongoing Projects
Cooperation
- Herbert De Gersem, Katholieke Universiteit Leuven
Publications
- 2019
4017.
Ehrhardt, Matthias
Transparent nonlinear networks
Physical Review E, 100 (3) :032204
2019
Herausgeber: American Physical Society4016.
Ehrhardt, Matthias
Transparent nonlinear networks
Physical Review E, 100 (3) :032204
2019
Herausgeber: American Physical Society4015.
Ehrhardt, Matthias
Transparent nonlinear networks
Physical Review E, 100 (3) :032204
2019
Herausgeber: American Physical Society4014.
Ehrhardt, Matthias
Transparent quantum graphs
Physics Letters A, 383 (20) :2382–2388
2019
Herausgeber: North-Holland4013.
Ehrhardt, Matthias
Transparent quantum graphs
Physics Letters A, 383 (20) :2382--2388
2019
Herausgeber: North-Holland4012.
Ehrhardt, Matthias
Transparent quantum graphs
Physics Letters A, 383 (20) :2382–2388
2019
Herausgeber: North-Holland4011.
Pulch, Roland; Putek, Piotr; Maten, E. Jan W.; Schoenmaker, Wim
Uncertainty quantification: Introduction and implementations
In ter Maten, E. Jan W. and Brachtendorf, Hans-Georg and Pulch, Roland and Schoenmaker, Wim and De Gersem, Herbert, Editor aus Mathematics in Industry
Seite 197–221
Herausgeber: Springer Cham
2019
197–2214010.
Netzel, Katrin
Untersuchung von Lignin aus Papierabwässern mittels Py-GCxGC/TOF-MS und Ofenpyrolyse
20194009.
Karg, Patrick
Untersuchung zu Imid-Amid-Gleichgewichten bei Hydroxycarbonsäure-Amiden
20194008.
Rapp, Ulrike
Untersuchung zur Quantifizierung von Mikroplastik mittels offline-Py-GCxGC-MS
20194007.
Otte, Adrian
Untersuchungen von Holzproben aus unterschiedlichen Holzschichten
20194006.
Goss, Jonas
Untersuchungen von Totholz nicht-heimischer Arten in Arnsberg sowie Totholz von Mammutbäumen in Kaldenkirchen
20194005.
Schlösser, Leonie Gwindy
Untersuchungen zur Gewässersanierung
20194004.
[german] Kremer, Richard; Tausch, Michael W.
Unterwegs zur künstlichen Photosynthese - Photokatalytische Reduktionen in Modellexperimenten
Chemie und Schule, 34 (3) :15-29
20194003.
Eichfelder, Gabriele; Klamroth, Kathrin; Niebling, Julia
Using a {B}&{B} algorithm from multiobjective optimization to solve constrained optimization problems
AIP Conference Proceedings 2070
Herausgeber: AIP Publishing
20194002.
Bolten, M.; Hahn, C.
Using composite finite elements for shape optimization with a stochastic objective functional
In I. Farag{\'o} and F. Izs{\'a}k and P. L. Simon, Editor, Progress in Industrial Mathematics at ECMI 2018Band30ausMathematics in Industry, Seite 515--520
In I. Farag{\'o} and F. Izs{\'a}k and P. L. Simon, Editor
Herausgeber: Springer, Cham
20194001.
Bolten, Matthias; Hahn, C.
Using composite finite elements for shape optimization with a stochastic objective functional
In I. Farago and F. Izsak and P. L. Simon, Editor, Progress in Industrial Mathematics at ECMI 2018Band30ausMathematics in Industry, Seite 515-520
In I. Farago and F. Izsak and P. L. Simon, Editor
Herausgeber: Springer, Cham
20194000.
Bolten, M.; Hahn, C.
Using composite finite elements for shape optimization with a stochastic objective functional
In I. Farago and F. Izsak and P. L. Simon, Editor, Progress in Industrial Mathematics at ECMI 2018Band30ausMathematics in Industry, Seite 515-520
In I. Farago and F. Izsak and P. L. Simon, Editor
Herausgeber: Springer, Cham
20193999.
Janssen, Rick; Gillon, Renaud; Wieers, Aarnout; Deleu, Frederik; Guegnaud, Hervé; Reynier, Pascal; Schoenmaker, Wim; Maten, E. Jan W.
Validation of simulation results on coupled problems
In ter Maten, E. Jan W. and Brachtendorf, Hans-Georg and Pulch, Roland and Schoenmaker, Wim and De Gersem, Herbert, Editor aus Mathematics in Industry
Seite 517–563
Herausgeber: Springer Cham
2019
517–5633998.
Adam, Ahmad Y.; Yachmenev, Andrey; Yurchenko, Sergey N.; Jensen, Per
Variationally Computed IR Line List for the Methyl Radical CH\(_{3}\)
The Journal of Physical Chemistry A, 123 (22) :4755-4763
2019
Herausgeber: American Chemical Society3997.
Adam, Ahmad Y.; Yachmenev, Andrey; Yurchenko, Sergey N.; Jensen, Per
Variationally Computed IR Line List for the Methyl Radical CH\(_{3}\)
The Journal of Physical Chemistry A, 123 (22) :4755-4763
2019
Herausgeber: American Chemical Society3996.
Adam, Ahmad Y.; Yachmenev, Andrey; Yurchenko, Sergey N.; Jensen, Per
Variationally Computed IR Line List for the Methyl Radical CH3
The Journal of Physical Chemistry A, 123 (22) :4755-4763
2019
Herausgeber: American Chemical Society3995.
Weichold, Cathrerine; Behler, Ansgar; Melchior, David; Busch, Stefan; Kling, Hans-Willi; Lange, Karsten; Jakob, Bernd
Verfahren zur Herstellung einer oberflächenaktiven Mischung umfassend Kondensationsprodukte von alpha-Hydroxycarbonsäuren mit 1,2-Alkandiolen
20193994.
Weichold, Cathrerine; Behler, Ansgar; Melchior, David; Busch, Stefan; Kling, Hans-Willi; Lange, Karsten; Jakob, Bernd
Verwendung von 1,2-Alkandiolen als Schaumverbesserer für Citronensäureestertenside umfassend ethoxylierte Alkohole
20193993.
Ankirchner, Stefan; Kruse, Thomas; Urusov, Mikhail
Wasserstein convergence rates for random bit approximations of continuous Markov processes
Journal of Mathematical Analysis and Applications, 493 (2) :124543
2019
Herausgeber: Academic Press