Dynamic Iteration Schemes

Dynamic iteration via source coupling
Standard time-integration methods solve transient problems all at once. This may become very inefficient or impossible for large systems of equations. Imaging that such large systems often stem from a coupled problem formulation, where different physical phenomena interact and need to be coupled in order to produce a precise mathematical model.
E.g. highly integrated electric circuits (as in memory chips or CPUs) produce heat, which effects in turn their behavior as electrical system; thus one needs to couple electric and thermal subproblem descriptions. On the one hand, this creates multiple time scales due to different physical phenomena, which demands an efficient treatment, see multirate. On the other hand, in a professional environment one usually has dedicated solvers for the subproblems, which need to be used, and an overall problem formulation is not feasible for any of the involved tools.
For those partitioned problems a dynamic iteration method becomes beneficial or even the sole way-out: it keeps the subproblems separate, solves subproblems sequentially (or in parallel) and iterates until convergence (fixed-point interation). Thus the subproblem's structure can be exploited in the respective integration.
To guarantee or to speed up convergence the time interval of interest is split into a series of windows. Then the time-integration of the windows is applied sequentially and in each window the subproblems are solved iteratively by your favoured method.
Group members working on that field
- Andreas Bartel
- Michael Günther
Former and ongoing Projects
Cooperation
- Herbert De Gersem, Katholieke Universiteit Leuven
Publications
- 2021
4441.
Sabirov, K.K.; Yusupov, J.R.; Aripov, M.M.; Ehrhardt, M.; Matrasulov, D.U.
Reflectionless propagation of {Manakov} solitons on a line: A model based on the concept of transparent boundary conditions
Phys. Rev. E, 103 (4) :043305
2021
Herausgeber: APS4440.
Ehrhardt, Matthias
Reflectionless propagation of Manakov solitons on a line: A model based on the concept of transparent boundary conditions
Physical Review E, 103 (4) :043305
2021
Herausgeber: American Physical Society4439.
Ehrhardt, Matthias
Reflectionless propagation of Manakov solitons on a line: A model based on the concept of transparent boundary conditions
Physical Review E, 103 (4) :043305
2021
Herausgeber: American Physical Society4438.
Reflectionless propagation of Manakov solitons on a line: A model based on the concept of transparent boundary conditions
Physical Review E, 103 (4) :043305
2021
Herausgeber: American Physical Society4437.
Acu, Ana-Maria; Gonska, Heiner; Heilmann, Margareta
Remarks on a Bernstein-type operator of Aldaz, Kounchev and Render
20214436.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Results in Applied Mathematics
20214435.
Jacob, Birgit; Kaiser, Julia T.; Zwart, Hans
Riesz bases of port-Hamiltonian systems
SIAM J. Control Optim., 59 (6) :4646-4665
20214434.
Bartel, Andreas; Ehrhardt, Matthias; Günther, Michael
Rosenbrock--Wanner-Type Methods
20214433.
Rosenbrock-Wanner-Type Methods: Theory and Applications
In T. Jax and A. Bartel and M. Ehrhardt and M. Günther and G. Steinebach, Editor
Herausgeber: Springer
2021ISBN: 978-3030768096
4432.
Rosenbrock-Wanner-Type Methods: Theory and Applications
In Jax, Tim and Bartel, Andreas and Ehrhardt, Matthias and Günther, Michael and Steinebach, Gerd, Editor aus Mathematics Online First Collections
Herausgeber: Springer Cham
2021ISBN: 978-3-030-76809-6
4431.
Rosenbrock-Wanner-Type Methods: Theory and Applications
In Jax, Tim and Bartel, Andreas and Ehrhardt, Matthias and Günther, Michael and Steinebach, Gerd, Editor aus Mathematics Online First Collections
Herausgeber: Springer Cham
2021ISBN: 978-3-030-76809-6
4430.
Rosenbrock-Wanner-Type Methods: Theory and Applications
In Jax, Tim and Bartel, Andreas and Ehrhardt, Matthias and Günther, Michael and Steinebach, Gerd, Editor aus Mathematics Online First Collections
Herausgeber: Springer Cham
2021ISBN: 978-3-030-76809-6
4429.
Abreu, Pedro; others
Search for upward-going showers with the Fluorescence Detector of the Pierre Auger Observatory
PoS, ICRC2021 :1140
20214428.
Kähne, B.; Clemens, M.
Semi-Explicit Time Integration of a Reduced Magnetic Vector Potential Magneto-Quasistatic Field Formulation
The 12th International Symposium on Electric and Magnetic Fields (EMF 2021), Online Conference, 06.-08.07.2021. Abstract accepted.
20214427.
Erdogdu, Duygu; Wissdorf, Walter; Allers, Maria; Kirk, Ansgar T.; Kersten, Hendrik; Zimmermann, Stefan; Benter, Thorsten
Simulation of Cluster Dynamics of Proton-Bound Water Clusters in a High Kinetic Energy Ion-Mobility Spectrometer
Journal of the American Society for Mass Spectrometry, 32 (9) :2436--2450
September 2021
ISSN: 1044-0305, 1879-11234426.
Gaul, Daniela; Klamroth, Kathrin; Stiglmayr, Michael
Solving the Dynamic Dial-a-Ride Problem Using a Rolling-Horizon Event-Based Graph
In M. Müller-Hannemann and F. Perea, Editor, 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021) Band 96 aus Open Access Series in Informatics (OASIcs)
Seite 8:1-8:16
Herausgeber: Schloss Dagstuhl - Leibniz-Zentrum für Informatik
2021
8:1-8:164425.
Weissen, Jennifer; Goettlich, Simone; Totzeck, Claudia
Space mapping-based optimization with the macroscopic limit of interacting particle systems
Optimization and Engineering, online
20214424.
Arora, Sahiba; Glück, Jochen
Spectrum and convergence of eventually positive operator semigroups
Semigroup Forum, 103 (3) :791--811
20214423.
Glück, Jochen; Mironchenko, Andrii
Stability criteria for positive linear discrete-time systems
Positivity, 25 (5) :2029--2059
20214422.
Jacob, Birgit; Skrepek, Nathanael
Stability of the multidimensional wave equation in port-Hamiltonian modelling
60th IEEE Conference on Decision and Control (CDC), Seite 6188-6193
Austin
20214421.
Alves Junior, Antonio Augusto; others
Status of the novel CORSIKA 8 air shower simulation framework
PoS, ICRC2021 :284
20214420.
Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Stochastic Runge-Kutta--Munthe-Kaas methods in the modelling of perturbed rigid bodies
20214419.
Günther, Michael; Sandu, Adrian; Zanna, Antonella
Symplectic GARK methods for Hamiltonian systems
arXiv preprint arXiv:2103.04110
20214418.
Günther, Michael; Sandu, Adrian; Zanna, Antonella
Symplectic GARK methods for Hamiltonian systems
Preprint
20214417.
Günther, Michael; Sandu, Adrian; Zanna, Antonella
Symplectic GARK methods for Hamiltonian systems
Preprint
2021