Dynamic Iteration Schemes
Dynamic iteration via source coupling
Standard time-integration methods solve transient problems all at once. This may become very inefficient or impossible for large systems of equations. Imaging that such large systems often stem from a coupled problem formulation, where different physical phenomena interact and need to be coupled in order to produce a precise mathematical model.
E.g. highly integrated electric circuits (as in memory chips or CPUs) produce heat, which effects in turn their behavior as electrical system; thus one needs to couple electric and thermal subproblem descriptions. On the one hand, this creates multiple time scales due to different physical phenomena, which demands an efficient treatment, see multirate. On the other hand, in a professional environment one usually has dedicated solvers for the subproblems, which need to be used, and an overall problem formulation is not feasible for any of the involved tools.
For those partitioned problems a dynamic iteration method becomes beneficial or even the sole way-out: it keeps the subproblems separate, solves subproblems sequentially (or in parallel) and iterates until convergence (fixed-point interation). Thus the subproblem's structure can be exploited in the respective integration.
To guarantee or to speed up convergence the time interval of interest is split into a series of windows. Then the time-integration of the windows is applied sequentially and in each window the subproblems are solved iteratively by your favoured method.
Group members working on that field
- Andreas Bartel
- Michael Günther
Former and ongoing Projects
Cooperation
- Herbert De Gersem, Katholieke Universiteit Leuven
Publications
- 2023
5068.
Aad, Georges; others
Search for pair-produced vector-like top and bottom partners in events with large missing transverse momentum in pp collisions with the ATLAS detector
Eur. Phys. J. C, 83 (8) :719
20235067.
Abreu, P.; others
Search for photons above 10^{19} eV with the surface detector of the Pierre Auger Observatory
JCAP, 05 :021
20235066.
Abdul Halim, Adila; others
Search for primary photons at tens of PeV with the Pierre Auger Observatory
PoS, ICRC2023 :238
20235065.
Abdul Halim, Adila; others
Search for Ultra-high-energy Photons from Gravitational Wave Sources with the Pierre Auger Observatory
Astrophys. J., 952 (1) :91
20235064.
Schweitzer, Marcel
Sensitivity of matrix function based network communicability measures: Computational methods and a priori bounds
SIAM J. Matrix Anal. Appl., 44 (3) :1321-1348
20235063.
Schweitzer, Marcel
Sensitivity of matrix function based network communicability measures: Computational methods and a priori bounds
SIAM J. Matrix Anal. Appl., 44 (3) :1321-1348
20235062.
Alameddine, Jean-Marco; others
Simulating radio emission from air showers with CORSIKA 8
PoS, ICRC2023 :425
20235061.
Alameddine, Jean-Marco; others
Simulations of cross media showers with CORSIKA 8
PoS, ICRC2023 :442
20235060.
Giaccari, Ugo Gregorio; others
Simulations of the antenna response for the Auger Radio Detector
PoS, ARENA2022 :042
20235059.
Schweitzer, Marcel
Sketched and truncated polynomial Krylov methods: Evaluation of matrix functions
20235058.
Schweitzer, Marcel
Sketched and truncated polynomial Krylov methods: Matrix Equations
20235057.
Bond, Amelia M. H.; Frey, Markus M.; Kaiser, Jan; Kleffmann, Jörg; Jones, Anna E.; Squires, Freya A.
Snowpack nitrate photolysis drives the summertime atmospheric nitrous acid (HONO) budget in coastal Antarctica
Atmospheric Chemistry and Physics, 23 (9) :5533—5550
Mai 2023
ISSN: 1680-73245056.
Acu, Ana-Maria; Heilmann, Margareta; Raşa, Ioan
Some results for the inverse of a Bernstein–Schnabl type operator
Analysis and Mathematical Physics, 13 (1)
20235055.
Mui, Jonathan
Spectral properties of locally eventually positive operator semigroups
Semigroup Forum, 106 :460-480
20235054.
Schäfers, Kevin; Bartel, Andreas; Günther, Michael; Hachtel, Christoph
Spline-oriented inter/extrapolation-based multirate schemes of higher order
Applied Mathematics Letters, 136 :108464
2023
Herausgeber: Pergamon5053.
Schäfers, Kevin; Bartel, Andreas; Günther, Michael; Hachtel, Christoph
Spline-oriented inter/extrapolation-based multirate schemes of higher order
Applied Mathematics Letters, 136 :108464
2023
Herausgeber: Pergamon5052.
Schäfers, Kevin; Bartel, Andreas; Günther, Michael; Hachtel, Christoph
Spline-oriented inter/extrapolation-based multirate schemes of higher order
Applied Mathematics Letters, 136 :108464
2023
Herausgeber: Pergamon5051.
Clemens, Markus; Günther, Michael
Stability of Transient Coupled Multi-Model Discrete Electromagnetic Field Formulations Using the Port-Hamiltonian System Framework
2023 International Conference on Electromagnetics in Advanced Applications (ICEAA), Seite 1–1
Herausgeber: IEEE
20235050.
Clemens, Markus; Günther, Michael
Stability of Transient Coupled Multi-Model Discrete Electromagnetic Field Formulations Using the Port-Hamiltonian System Framework
2023 International Conference on Electromagnetics in Advanced Applications (ICEAA), Seite 1–1
Herausgeber: IEEE
20235049.
Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Strong stochastic Runge-Kutta-Munthe-Kaas methods for nonlinear Itô SDEs on manifolds
Applied Numerical Mathematics, 193 :196–203
2023
Herausgeber: North-Holland5048.
Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Strong stochastic Runge-Kutta-Munthe-Kaas methods for nonlinear Itô SDEs on manifolds
Applied Numerical Mathematics, 193 :196–203
2023
Herausgeber: North-Holland5047.
Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Strong stochastic Runge-Kutta-Munthe-Kaas methods for nonlinear Itô SDEs on manifolds
Applied Numerical Mathematics, 193 :196–203
2023
Herausgeber: North-Holland5046.
Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Strong stochastic Runge-Kutta–Munthe-Kaas methods for nonlinear Itô SDEs on manifolds
Applied Numerical Mathematics
2023
ISSN: 0168-92745045.
Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Structure-preserving identification of port-Hamiltonian systems - a sensitivity-based approach
20235044.
Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Structure-preserving identification of port-Hamiltonian systems--a sensitivity-based approach
arXiv preprint arXiv:2301.02019
2023