Applied and Computational Mathematics (ACM)

Dynamic Iteration Schemes

Dynamic iteration via source coupling

Standard time-integration methods solve transient problems all at once. This may become very inefficient or impossible for large systems of equations. Imaging that such large systems often stem from a coupled problem formulation, where different physical phenomena interact and need to be coupled in order to produce a precise mathematical model.
E.g. highly integrated electric circuits (as in memory chips or CPUs) produce heat, which effects in turn their behavior as electrical system; thus one needs to couple electric and thermal subproblem descriptions. On the one hand, this creates multiple time scales due to different physical phenomena, which demands an efficient treatment, see multirate. On the other hand, in a professional environment one usually has dedicated solvers for the subproblems, which need to be used, and an overall problem formulation is not feasible for any of the involved tools.

For those partitioned problems a dynamic iteration method becomes beneficial or even the sole way-out: it keeps the subproblems separate, solves subproblems sequentially (or in parallel) and iterates until convergence (fixed-point interation). Thus the subproblem's structure can be exploited in the respective integration.

To guarantee or to speed up convergence the time interval of interest is split into a series of windows. Then the time-integration of the windows is applied sequentially and in each window the subproblems are solved iteratively by your favoured method.

Group members working on that field

  • Andreas Bartel
  • Michael Günther

Former and ongoing Projects

Cooperation

Publications



1983

67.

Jensen, Per
The nonrigid bender Hamiltonian for calculating the rotation-vibration energy levels of a triatomic molecule
Computer Physics Reports, 1 (1) :1-55
1983

66.

Jensen, Per
The nonrigid bender Hamiltonian for calculating the rotation-vibration energy levels of a triatomic molecule
Computer Physics Reports, 1 (1) :1-55
1983

65.

Holstein, K. J.; Fink, Ewald H.; Zabel, Friedhelm
The ν3 vibration of electronically excited HO2(A2A')
Journal of Molecular Spectroscopy, 99 (1) :231-234
1983
1982

64.

Winter, R.; Barnes, Ian; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) and a\(^{1}\)\(\Delta\) emissions from group VI-VI diatomic molecules b0\(_{g}\)\(^{+}\) → X\(^{2}\)1\(_{g}\) emissions of Se\(_{2}\) and Te\(_{2}\)
Chemical Physics Letters, 86 (2) :118-122
1982

63.

Winter, R.; Barnes, Ian; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) and a\(^{1}\)\(\Delta\) emissions from group VI-VI diatomic molecules b0\(_{g}\)\(^{+}\) → X\(^{2}\)1\(_{g}\) emissions of Se\(_{2}\) and Te\(_{2}\)
Chemical Physics Letters, 86 (2) :118-122
1982

62.

Winter, R.; Barnes, Ian; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) and a\(^{1}\)\(\Delta\) emissions from group VI-VI diatomic molecules: b0\(^{+}\) → X\(_{1}\)0\(^{+}\), X\(_{2}\)1 emissions of TeO and TeS
Journal of Molecular Structure, 80 :75-82
1982

61.

Winter, R.; Barnes, Ian; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) and a\(^{1}\)\(\Delta\) emissions from group VI-VI diatomic molecules: b0\(^{+}\) → X\(_{1}\)0\(^{+}\), X\(_{2}\)1 emissions of TeO and TeS
Journal of Molecular Structure, 80 :75-82
1982

60.

Kruse, H.; Winter, R.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) emissions from group V-VII diatomic molecules: b0\(^{+}\) → X\(_{1}\)0\(^{+}\), X\(_{2}\)0\(^{+}\) emissions of SbBr
Chemical Physics Letters, 93 (5) :475-479
1982

59.

Kruse, H.; Winter, R.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) emissions from group V-VII diatomic molecules: b0\(^{+}\) → X\(_{1}\)0\(^{+}\), X\(_{2}\)0\(^{+}\) emissions of SbBr
Chemical Physics Letters, 93 (5) :475-479
1982

58.

Winter, R.; Barnes, Ian; Fink, Ewald H.; Wildt, Jürgen; Zabel, Friedhelm
b1Σ+ and a1Δ emissions from group VI-VI diatomic molecules b0g+ → X21g emissions of Se2 and Te2
Chemical Physics Letters, 86 (2) :118-122
1982

57.

Winter, R.; Barnes, Ian; Fink, Ewald H.; Wildt, Jürgen; Zabel, Friedhelm
b1Σ+ and a1Δ emissions from group VI-VI diatomic molecules: b0+ → X10+, X21 emissions of TeO and TeS
Journal of Molecular Structure, 80 :75-82
1982

56.

Kruse, H.; Winter, R.; Fink, Ewald H.; Wildt, Jürgen; Zabel, Friedhelm
b1Σ+ emissions from group V-VII diatomic molecules: b0+ → X10+, X20+ emissions of SbBr
Chemical Physics Letters, 93 (5) :475-479
1982

55.

Tausch, Michael W.
Modelle im Chemieunterricht
Der mathematische und naturwissenschaftliche Unterricht (MNU), 35 :226
1982

54.

Becker, Karl Heinz; Horie, O.; Schmidt, V. H.; Wiesen, Peter
Spectroscopic identification of C\(_{2}\)O radicals in the C\(_{3}\)O\(_{2}\) + O flame system by laser-induced fluorescence
Chemical Physics Letters, 90 (1) :64-68
1982

53.

Becker, Karl Heinz; Horie, O.; Schmidt, V. H.; Wiesen, Peter
Spectroscopic identification of C\(_{2}\)O radicals in the C\(_{3}\)O\(_{2}\) + O flame system by laser-induced fluorescence
Chemical Physics Letters, 90 (1) :64-68
1982

52.

Becker, Karl Heinz; Horie, O.; Schmidt, V. H.; Wiesen, Peter
Spectroscopic identification of C2O radicals in the C3O2 + O flame system by laser-induced fluorescence
Chemical Physics Letters, 90 (1) :64-68
1982

51.

Jensen, Per; Brodersen, Svend
The \(\nu\)\(_{5}\) Raman band of CH\(_{3}\)CD\(_{3}\)
Journal of Raman Spectroscopy, 12 (3) :295-299
1982

50.

Jensen, Per; Brodersen, Svend
The \(\nu\)\(_{5}\) Raman band of CH\(_{3}\)CD\(_{3}\)
Journal of Raman Spectroscopy, 12 (3) :295-299
1982

49.

Jensen, Per; Bunker, Philip R.; Hoy, A. R.
The equilibrium geometry, potential function, and rotation?vibration energies of CH\(_{2}\) in the X\verb=~=\(^{3}\)B\(_{1}\) ground state
The Journal of Chemical Physics, 77 (11) :5370-5374
1982

48.

Jensen, Per; Bunker, Philip R.; Hoy, A. R.
The equilibrium geometry, potential function, and rotation?vibration energies of CH\(_{2}\) in the X\verb=~=\(^{3}\)B\(_{1}\) ground state
The Journal of Chemical Physics, 77 (11) :5370-5374
1982

47.

Jensen, Per; Bunker, Philip R.; Hoy, A. R.
The equilibrium geometry, potential function, and rotation?vibration energies of CH2 in the X~3B1 ground state
The Journal of Chemical Physics, 77 (11) :5370-5374
1982

46.

Jensen, Per; Bunker, Philip R.
The geometry and the inversion potential function of formaldehyde in the and electronic states
Journal of Molecular Spectroscopy, 94 (1) :114-125
1982

45.

Jensen, Per; Bunker, Philip R.
The geometry and the inversion potential function of formaldehyde in the and electronic states
Journal of Molecular Spectroscopy, 94 (1) :114-125
1982

44.

Jensen, Per; Bunker, Philip R.
The geometry and the inversion potential function of formaldehyde in the and electronic states
Journal of Molecular Spectroscopy, 94 (1) :114-125
1982

43.

Jensen, Per; Bunker, Philip R.
The geometry and the out-of-plane bending potential function of thioformaldehyde in the A\verb=~=\(^{1}\)A\(_{2}\) and a\verb=~=\(^{3}\)A\(_{2}\) electronic states
Journal of Molecular Spectroscopy, 95 (1) :92-100
1982