Applied and Computational Mathematics (ACM)

Dynamic Iteration Schemes

Dynamic iteration via source coupling

Standard time-integration methods solve transient problems all at once. This may become very inefficient or impossible for large systems of equations. Imaging that such large systems often stem from a coupled problem formulation, where different physical phenomena interact and need to be coupled in order to produce a precise mathematical model.
E.g. highly integrated electric circuits (as in memory chips or CPUs) produce heat, which effects in turn their behavior as electrical system; thus one needs to couple electric and thermal subproblem descriptions. On the one hand, this creates multiple time scales due to different physical phenomena, which demands an efficient treatment, see multirate. On the other hand, in a professional environment one usually has dedicated solvers for the subproblems, which need to be used, and an overall problem formulation is not feasible for any of the involved tools.

For those partitioned problems a dynamic iteration method becomes beneficial or even the sole way-out: it keeps the subproblems separate, solves subproblems sequentially (or in parallel) and iterates until convergence (fixed-point interation). Thus the subproblem's structure can be exploited in the respective integration.

To guarantee or to speed up convergence the time interval of interest is split into a series of windows. Then the time-integration of the windows is applied sequentially and in each window the subproblems are solved iteratively by your favoured method.

Group members working on that field

  • Andreas Bartel
  • Michael Günther

Former and ongoing Projects

Cooperation

Publications



1992

402.

Benter, Thorsten; Becker, Eilhard; Wille, Uta; Rahman, M. M.; Schindler, Ralph N.
The Determination of Rate Constants for the Reactions of Some Alkenes with the NO\(_{3}\) Radical
Berichte der Bunsengesellschaft für physikalische Chemie, 96 (6) :769-775
1992

401.

Shestakov, Oleg; Pravilov, A. M.; Demes, H.; Fink, Ewald H.
Radiative lifetime and quenching of the A \(^{2}\)\(\Sigma\)\(^{+}\) and X\(_{2}\) \(^{2}\)\(\Pi\)\(_{3/2}\) states of PbF
Chemical Physics, 165 (2-3) :415-427
1992

400.

Benter, Thorsten; Becker, Eilhard; Wille, Uta; Rahman, M. M.; Schindler, Ralph N.
The Determination of Rate Constants for the Reactions of Some Alkenes with the NO\(_{3}\) Radical
Berichte der Bunsengesellschaft für physikalische Chemie, 96 (6) :769-775
1992

399.

Benter, Thorsten; Becker, Eilhard; Wille, Uta; Rahman, M. M.; Schindler, Ralph N.
The Determination of Rate Constants for the Reactions of Some Alkenes with the NO3 Radical
Berichte der Bunsengesellschaft für physikalische Chemie, 96 (6) :769-775
1992

398.

Ziebarth, K.; Breidohr, R.; Shestakov, Oleg; Fink, Ewald H.
The X\(_{2}\) \(^{2}\)\(\Pi\)\(_{3/2}\) → X\(_{1}\) \(^{2}\)\(\Pi\)\(_{1/2}\) electronic band systems of lead monohalides in the near infrared
Chemical Physics Letters, 190 (3-4) :271-278
1992

397.

Ziebarth, K.; Breidohr, R.; Shestakov, Oleg; Fink, Ewald H.
The X\(_{2}\) \(^{2}\)\(\Pi\)\(_{3/2}\) → X\(_{1}\) \(^{2}\)\(\Pi\)\(_{1/2}\) electronic band systems of lead monohalides in the near infrared
Chemical Physics Letters, 190 (3-4) :271-278
1992

396.

Ziebarth, K.; Breidohr, R.; Shestakov, Oleg; Fink, Ewald H.
The X2 2Π3/2 → X1 2Π1/2 electronic band systems of lead monohalides in the near infrared
Chemical Physics Letters, 190 (3-4) :271-278
1992

395.

Barone, Vincenzo; Jensen, Per; Minichino, Camilla
Vibro-rotational analysis of Si\(_{2}\)C from an ab initio potential energy surface. A comparison between perturbative and variational methods
Journal of Molecular Spectroscopy, 154 (2) :252-264
1992

394.

Barone, Vincenzo; Jensen, Per; Minichino, Camilla
Vibro-rotational analysis of Si\(_{2}\)C from an ab initio potential energy surface. A comparison between perturbative and variational methods
Journal of Molecular Spectroscopy, 154 (2) :252-264
1992

393.

Barone, Vincenzo; Jensen, Per; Minichino, Camilla
Vibro-rotational analysis of Si2C from an ab initio potential energy surface. A comparison between perturbative and variational methods
Journal of Molecular Spectroscopy, 154 (2) :252-264
1992

392.

Shestakov, Oleg; Pravilov, A. M.; Demes, H.; Fink, Ewald H.
Radiative lifetime and quenching of the A \(^{2}\)\(\Sigma\)\(^{+}\) and X\(_{2}\) \(^{2}\)\(\Pi\)\(_{3/2}\) states of PbF
Chemical Physics, 165 (2-3) :415-427
1992

391.

Bunker, Philip R.; Hamilton, I. P.; Jensen, Per
Rotation-vibration energies for the HO\(_{2}\) molecule
Journal of Molecular Spectroscopy, 155 (1) :44-54
1992

390.

G\"unther, Michael
Multirate {Rosenbrock}-{Wanner} Verfahren zur Integration von elektrischen Schaltkreisen
Technische Universit\"at at M\"unchen
1992

389.

Wildt, J{ü}rgen; Fink, Ewald H.; Biggs, P.; Wayne, Richard P.; Vilesov, A. F.
Collision-induced emission of O\(_{2}\)(a \(^{1}\)\(\Delta\)\(_{g}\) → X \(^{3}\)\(\Sigma\)\(_{g}\)\(^{-}\)) in the gas phase
Chemical Physics, 159 (1) :127-140
1992

388.

Kraemer, Wolfgang P.; Jensen, Per; Roos, B. O.; Bunker, Philip R.
Ab initio rotation-vibration energies and intensities for the HNC\(^{+}\) molecule
Journal of Molecular Spectroscopy, 153 (1-2) :240-254
1992

387.

Kraemer, Wolfgang P.; Jensen, Per; Roos, B. O.; Bunker, Philip R.
Ab initio rotation-vibration energies and intensities for the HNC\(^{+}\) molecule
Journal of Molecular Spectroscopy, 153 (1-2) :240-254
1992

386.

Kraemer, Wolfgang P.; Jensen, Per; Roos, B. O.; Bunker, Philip R.
Ab initio rotation-vibration energies and intensities for the HNC+ molecule
Journal of Molecular Spectroscopy, 153 (1-2) :240-254
1992

385.

Jensen, Per; Bunker, Philip R.; Epa, V. C.; Karpfen, Alfred
An ab initio calculation of the fundamental and overtone HCl stretching vibrations for the HCl dimer
Journal of Molecular Spectroscopy, 151 (2) :384-395
1992

384.

Tausch, Michael W.; Wachtendonk, M.; Deissenberger, H.; Porth, H.-R.; Weißenhorn, R.G.
Lehrerband mit didaktischen Hinweisen und Lösungen der Aufgaben zu STOFF-FORMEL-UMWELT, BAND 2: ORGANISCHE CHEMIE - ANGEWANDTE CHEMIE, Lehrbuch für die S II, (Grund- und Leistungskurse)
Herausgeber: C. C. Buchner, Bamberg
1992

383.

Jensen, Per; Rohlfing, Celeste Michael; Alml{ö}f, Jan
Calculation of the complete-active-space self-consistent-field potential-energy surface, the dipole moment surfaces, the rotation-vibration energies, and the vibrational transition moments for C\(_{3}\)(X\verb=~= \(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\))
The Journal of Chemical Physics, 97 (5) :3399-3411
1992

382.

Jensen, Per; Rohlfing, Celeste Michael; Alml{ö}f, Jan
Calculation of the complete-active-space self-consistent-field potential-energy surface, the dipole moment surfaces, the rotation-vibration energies, and the vibrational transition moments for C\(_{3}\)(X\verb=~= \(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\))
The Journal of Chemical Physics, 97 (5) :3399-3411
1992

381.

Jensen, Per; Rohlfing, Celeste Michael; Almlöf, Jan
Calculation of the complete-active-space self-consistent-field potential-energy surface, the dipole moment surfaces, the rotation-vibration energies, and the vibrational transition moments for C3(X~ 1Σg+)
The Journal of Chemical Physics, 97 (5) :3399-3411
1992

380.

Jensen, Per; Bunker, Philip R.; Epa, V. C.; Karpfen, Alfred
An ab initio calculation of the fundamental and overtone HCl stretching vibrations for the HCl dimer
Journal of Molecular Spectroscopy, 151 (2) :384-395
1992

379.

Wildt, J{ü}rgen; Fink, Ewald H.; Biggs, P.; Wayne, Richard P.; Vilesov, A. F.
Collision-induced emission of O\(_{2}\)(a \(^{1}\)\(\Delta\)\(_{g}\) → X \(^{3}\)\(\Sigma\)\(_{g}\)\(^{-}\)) in the gas phase
Chemical Physics, 159 (1) :127-140
1992

378.

Heilmann, Margareta
Erhöhung der Konvergenzgeschwindigkeit bei der Approximation von Funktionen mit Hilfe von Linearkombinationen spezieller positiver linearer Operatoren
Universität Dortmund
1992

Weitere Infos über #UniWuppertal: