Dynamic Iteration Schemes

Dynamic iteration via source coupling
Standard time-integration methods solve transient problems all at once. This may become very inefficient or impossible for large systems of equations. Imaging that such large systems often stem from a coupled problem formulation, where different physical phenomena interact and need to be coupled in order to produce a precise mathematical model.
E.g. highly integrated electric circuits (as in memory chips or CPUs) produce heat, which effects in turn their behavior as electrical system; thus one needs to couple electric and thermal subproblem descriptions. On the one hand, this creates multiple time scales due to different physical phenomena, which demands an efficient treatment, see multirate. On the other hand, in a professional environment one usually has dedicated solvers for the subproblems, which need to be used, and an overall problem formulation is not feasible for any of the involved tools.
For those partitioned problems a dynamic iteration method becomes beneficial or even the sole way-out: it keeps the subproblems separate, solves subproblems sequentially (or in parallel) and iterates until convergence (fixed-point interation). Thus the subproblem's structure can be exploited in the respective integration.
To guarantee or to speed up convergence the time interval of interest is split into a series of windows. Then the time-integration of the windows is applied sequentially and in each window the subproblems are solved iteratively by your favoured method.
Group members working on that field
- Andreas Bartel
- Michael Günther
Former and ongoing Projects
Cooperation
- Herbert De Gersem, Katholieke Universiteit Leuven
Publications
- 1986
142.
Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.; Beardsworth, R.
The potential surface of X\verb=~=\(^{3}\)B\(_{1}\) methylene (CH\(_{2}\)) and the singlet-triplet splitting
The Journal of Chemical Physics, 85 (7) :3724-3731
1986141.
Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.; Beardsworth, R.
The potential surface of X~3B1 methylene (CH2) and the singlet-triplet splitting
The Journal of Chemical Physics, 85 (7) :3724-3731
1986140.
Vojt{í}k, Jan; Spirko, Vladim{í}r; Jensen, Per
Vibrational energies of H\(_{3}\)\(^{+}\) and Li\(_{3}\)\(^{+}\) based on the diatomics-in-molecules potentials
Collection of Czechoslovak Chemical Communications, 51 (10) :2057-2062
1986
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.139.
Vojt{í}k, Jan; Spirko, Vladim{í}r; Jensen, Per
Vibrational energies of H\(_{3}\)\(^{+}\) and Li\(_{3}\)\(^{+}\) based on the diatomics-in-molecules potentials
Collection of Czechoslovak Chemical Communications, 51 (10) :2057-2062
1986
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.138.
Vojtík, Jan; Spirko, Vladimír; Jensen, Per
Vibrational energies of H3+ and Li3+ based on the diatomics-in-molecules potentials
Collection of Czechoslovak Chemical Communications, 51 (10) :2057-2062
1986
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.- 1985
137.
Holstein, K. J.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
A\verb=~=\(^{2}\)A' → X\verb=~=\(^{2}\)A'' emission spectrum of the HS\(_{2}\) radical
Chemical Physics Letters, 113 (1) :1-7
1985136.
Holstein, K. J.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
A\verb=~=\(^{2}\)A' → X\verb=~=\(^{2}\)A'' emission spectrum of the HS\(_{2}\) radical
Chemical Physics Letters, 113 (1) :1-7
1985135.
Holstein, K. J.; Fink, Ewald H.; Wildt, Jürgen; Zabel, Friedhelm
A~2A' → X~2A" emission spectrum of the HS2 radical
Chemical Physics Letters, 113 (1) :1-7
1985134.
Tausch, Michael W.
Aktivierungsenergie - was ist das?
Praxis der Naturwissenschaften (Chemie), 34 :33
1985133.
Phillips, R.A.; Buenker, Robert J.; Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
An ab initio study of the rotation-vibration energy levels of GeH\(_{2}\) in the a\verb=~=\(^{3}\)B\(_{1}\) state
Chemical Physics Letters, 118 (1) :60-63
1985132.
Phillips, R.A.; Buenker, Robert J.; Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
An ab initio study of the rotation-vibration energy levels of GeH\(_{2}\) in the a\verb=~=\(^{3}\)B\(_{1}\) state
Chemical Physics Letters, 118 (1) :60-63
1985131.
Phillips, R.A.; Buenker, Robert J.; Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
An ab initio study of the rotation-vibration energy levels of GeH2 in the a~3B1 state
Chemical Physics Letters, 118 (1) :60-63
1985130.
Kling, H.-W.; Hartkamp, H.; Buchholz, N.
Matrixunabhängige kontinuierliche Dampfraum-Gas-Chromatographie
Fresenius' Journal of Analytical Chemistry, 320 (4) :341--346
1985129.
Winkler, R.
Path-following for two-point boundary value problems
, Seminarbericht 78 der Sektion MathematikBand78
Humboldt-Universität zu Berlin
1985128.
Spirko, Vladim{í}r; Jensen, Per; Bunker, Philip R.; Cejchan, A.
The development of a new Morse-oscillator based rotation-vibration Hamiltonian for H\(_{3}\)\(^{+}\)
Journal of Molecular Spectroscopy, 112 (1) :183-202
1985127.
Spirko, Vladim{í}r; Jensen, Per; Bunker, Philip R.; Cejchan, A.
The development of a new Morse-oscillator based rotation-vibration Hamiltonian for H\(_{3}\)\(^{+}\)
Journal of Molecular Spectroscopy, 112 (1) :183-202
1985126.
Spirko, Vladimír; Jensen, Per; Bunker, Philip R.; Cejchan, A.
The development of a new Morse-oscillator based rotation-vibration Hamiltonian for H3+
Journal of Molecular Spectroscopy, 112 (1) :183-202
1985125.
Lamour, R.; Hanke, M.; Winkler, R.
The program system ‘RWA’ (version 2) for the solution of TPBVP - fundamentals and algorithms
, Seminarbericht 67 der Sektion MathematikBand67
Humboldt-Universität zu Berlin
1985- 1984
124.
Morillon-Chapey, M.; Guelachvili, Guy; Jensen, Per
Analysis of the high resolution spectrum of the \(\nu\)\(_{2}\) and \(\nu\)\(_{5}\) absorption bands of methyl chloride
Canadian Journal of Physics, 62 (3) :247-253
1984
Herausgeber: NRC Research Press Ottawa, Canada123.
Morillon-Chapey, M.; Guelachvili, Guy; Jensen, Per
Analysis of the high resolution spectrum of the \(\nu\)\(_{2}\) and \(\nu\)\(_{5}\) absorption bands of methyl chloride
Canadian Journal of Physics, 62 (3) :247-253
1984
Herausgeber: NRC Research Press Ottawa, Canada122.
Morillon-Chapey, M.; Guelachvili, Guy; Jensen, Per
Analysis of the high resolution spectrum of the ν2 and ν5 absorption bands of methyl chloride
Canadian Journal of Physics, 62 (3) :247-253
1984
Herausgeber: NRC Research Press Ottawa, Canada121.
Kruse, H.; Winter, R.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) Emissions from group V-VII diatomic molecules. b0\(^{+}\) → X\(_{1}\)0\(^{+}\), X\(_{2}\)1 band systems of AsCl and AsBr
Chemical Physics Letters, 111 (1-2) :100-104
1984120.
Kruse, H.; Winter, R.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) Emissions from group V-VII diatomic molecules. b0\(^{+}\) → X\(_{1}\)0\(^{+}\), X\(_{2}\)1 band systems of AsCl and AsBr
Chemical Physics Letters, 111 (1-2) :100-104
1984119.
Winter, R.; Kruse, H.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) Emissions from group V-VII diatomic molecules. b0\(^{+}\) → X\(_{1}\)0\(^{+}\), X\(_{2}\)1 emissions of AsI and SbI
Chemical Physics Letters, 104 (4) :383-388
1984118.
Winter, R.; Kruse, H.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b\(^{1}\)\(\Sigma\)\(^{+}\) Emissions from group V-VII diatomic molecules. b0\(^{+}\) → X\(_{1}\)0\(^{+}\), X\(_{2}\)1 emissions of AsI and SbI
Chemical Physics Letters, 104 (4) :383-388
1984