Applied and Computational Mathematics (ACM)

Dynamic Iteration Schemes

Dynamic iteration via source coupling

Standard time-integration methods solve transient problems all at once. This may become very inefficient or impossible for large systems of equations. Imaging that such large systems often stem from a coupled problem formulation, where different physical phenomena interact and need to be coupled in order to produce a precise mathematical model.
E.g. highly integrated electric circuits (as in memory chips or CPUs) produce heat, which effects in turn their behavior as electrical system; thus one needs to couple electric and thermal subproblem descriptions. On the one hand, this creates multiple time scales due to different physical phenomena, which demands an efficient treatment, see multirate. On the other hand, in a professional environment one usually has dedicated solvers for the subproblems, which need to be used, and an overall problem formulation is not feasible for any of the involved tools.

For those partitioned problems a dynamic iteration method becomes beneficial or even the sole way-out: it keeps the subproblems separate, solves subproblems sequentially (or in parallel) and iterates until convergence (fixed-point interation). Thus the subproblem's structure can be exploited in the respective integration.

To guarantee or to speed up convergence the time interval of interest is split into a series of windows. Then the time-integration of the windows is applied sequentially and in each window the subproblems are solved iteratively by your favoured method.

Group members working on that field

  • Andreas Bartel
  • Michael Günther

Former and ongoing Projects

Cooperation

Publications



1982

55.

Tausch, Michael W.
Modelle im Chemieunterricht
Der mathematische und naturwissenschaftliche Unterricht (MNU), 35 :226
1982

54.

Becker, Karl Heinz; Horie, O.; Schmidt, V. H.; Wiesen, Peter
Spectroscopic identification of C\(_{2}\)O radicals in the C\(_{3}\)O\(_{2}\) + O flame system by laser-induced fluorescence
Chemical Physics Letters, 90 (1) :64-68
1982

53.

Becker, Karl Heinz; Horie, O.; Schmidt, V. H.; Wiesen, Peter
Spectroscopic identification of C\(_{2}\)O radicals in the C\(_{3}\)O\(_{2}\) + O flame system by laser-induced fluorescence
Chemical Physics Letters, 90 (1) :64-68
1982

52.

Becker, Karl Heinz; Horie, O.; Schmidt, V. H.; Wiesen, Peter
Spectroscopic identification of C2O radicals in the C3O2 + O flame system by laser-induced fluorescence
Chemical Physics Letters, 90 (1) :64-68
1982

51.

Jensen, Per; Brodersen, Svend
The \(\nu\)\(_{5}\) Raman band of CH\(_{3}\)CD\(_{3}\)
Journal of Raman Spectroscopy, 12 (3) :295-299
1982

50.

Jensen, Per; Brodersen, Svend
The \(\nu\)\(_{5}\) Raman band of CH\(_{3}\)CD\(_{3}\)
Journal of Raman Spectroscopy, 12 (3) :295-299
1982

49.

Jensen, Per; Bunker, Philip R.; Hoy, A. R.
The equilibrium geometry, potential function, and rotation?vibration energies of CH\(_{2}\) in the X\verb=~=\(^{3}\)B\(_{1}\) ground state
The Journal of Chemical Physics, 77 (11) :5370-5374
1982

48.

Jensen, Per; Bunker, Philip R.; Hoy, A. R.
The equilibrium geometry, potential function, and rotation?vibration energies of CH\(_{2}\) in the X\verb=~=\(^{3}\)B\(_{1}\) ground state
The Journal of Chemical Physics, 77 (11) :5370-5374
1982

47.

Jensen, Per; Bunker, Philip R.; Hoy, A. R.
The equilibrium geometry, potential function, and rotation?vibration energies of CH2 in the X~3B1 ground state
The Journal of Chemical Physics, 77 (11) :5370-5374
1982

46.

Jensen, Per; Bunker, Philip R.
The geometry and the inversion potential function of formaldehyde in the and electronic states
Journal of Molecular Spectroscopy, 94 (1) :114-125
1982

45.

Jensen, Per; Bunker, Philip R.
The geometry and the inversion potential function of formaldehyde in the and electronic states
Journal of Molecular Spectroscopy, 94 (1) :114-125
1982

44.

Jensen, Per; Bunker, Philip R.
The geometry and the inversion potential function of formaldehyde in the and electronic states
Journal of Molecular Spectroscopy, 94 (1) :114-125
1982

43.

Jensen, Per; Bunker, Philip R.
The geometry and the out-of-plane bending potential function of thioformaldehyde in the A\verb=~=\(^{1}\)A\(_{2}\) and a\verb=~=\(^{3}\)A\(_{2}\) electronic states
Journal of Molecular Spectroscopy, 95 (1) :92-100
1982

42.

Jensen, Per; Bunker, Philip R.
The geometry and the out-of-plane bending potential function of thioformaldehyde in the A\verb=~=\(^{1}\)A\(_{2}\) and a\verb=~=\(^{3}\)A\(_{2}\) electronic states
Journal of Molecular Spectroscopy, 95 (1) :92-100
1982

41.

Jensen, Per; Bunker, Philip R.
The geometry and the out-of-plane bending potential function of thioformaldehyde in the A~1A2 and a~3A2 electronic states
Journal of Molecular Spectroscopy, 95 (1) :92-100
1982

40.

Jensen, Per; Brodersen, Svend
The ν5 Raman band of CH3CD3
Journal of Raman Spectroscopy, 12 (3) :295-299
1982

39.

Tausch, Michael W.; J. Plath, P.
Umlagerungen in (CH)₇⁺-Carbokationen
Revue Roumaine de Chimie, 27 :953
1982
1981

38.

Tausch, Michael W.
BINDUNG UND STRUKTUR - Unterrichtsbuch für die gymnasiale Oberstufe
Herausgeber: Schöningh, Paderborn
1981

37.

Jensen, Per; Brodersen, Svend; Guelachvili, Guy
Determination of A\(_{0}\) for CH\(_{3}\)\(^{35}\)Cl and CH\(_{3}\)\(^{37}\)Cl from the \(\nu\)\(_{4}\) infrared and Raman bands
Journal of Molecular Spectroscopy, 88 (2) :378-393
1981

36.

Jensen, Per; Brodersen, Svend; Guelachvili, Guy
Determination of A\(_{0}\) for CH\(_{3}\)\(^{35}\)Cl and CH\(_{3}\)\(^{37}\)Cl from the \(\nu\)\(_{4}\) infrared and Raman bands
Journal of Molecular Spectroscopy, 88 (2) :378-393
1981

35.

Jensen, Per; Brodersen, Svend; Guelachvili, Guy
Determination of A0 for CH335Cl and CH337Cl from the ν4 infrared and Raman bands
Journal of Molecular Spectroscopy, 88 (2) :378-393
1981

34.

Barnes, Ian; Bastian, V.; Becker, Karl Heinz; Fink, Ewald H.; Zabel, Friedhelm
Rate constant of the reaction of OH with HO\(_{2}\)NO\(_{2}\)
Chemical Physics Letters, 83 (3) :459-464
1981

33.

Barnes, Ian; Bastian, V.; Becker, Karl Heinz; Fink, Ewald H.; Zabel, Friedhelm
Rate constant of the reaction of OH with HO\(_{2}\)NO\(_{2}\)
Chemical Physics Letters, 83 (3) :459-464
1981

32.

Barnes, Ian; Bastian, V.; Becker, Karl Heinz; Fink, Ewald H.; Zabel, Friedhelm
Rate constant of the reaction of OH with HO2NO2
Chemical Physics Letters, 83 (3) :459-464
1981

31.

Tausch, Michael W.
THEORETISCHE UND EXPERIMENTELLE UNTERSUCHUNGEN VON VALENZISOMERISIERUNGEN
Herausgeber: Minerva Publikation, München
1981