Applied and Computational Mathematics (ACM)

Artificial Boundary Conditions

When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).

We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.

Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.

Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.

Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.

Software

Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.

Publications



2016

3520.

Lee, James D.; Whalley, Lisa K.; Heard, Dwayne E.; Stone, Daniel; Dunmore, Rachel E.; Hamilton, Jacqueline F.; Young, D. E.; Allan, J. D.; Laufs, Sebastian; Kleffmann, Jörg
Detailed budget analysis of HONO in central London reveals a missing daytime source
Atmospheric Chemistry and Physics, 16 (5) :2747-2764
2016

3519.

Lee, James D.; Whalley, Lisa K.; Heard, Dwayne E.; Stone, Daniel; Dunmore, Rachel E.; Hamilton, Jacqueline F.; Young, D. E.; Allan, J. D.; Laufs, Sebastian; Kleffmann, Jörg
Detailed budget analysis of HONO in central London reveals a missing daytime source
Atmospheric Chemistry and Physics, 16 (5) :2747-2764
2016

3518.

Wyss, Christian
Dichotomy, spectral subspaces and unbounded projections
, Operator theory, function spaces, and applications Band 255 aus Oper. Theory Adv. Appl.
Seite 221-233
Herausgeber: Birkhäuser/Springer
2016
221-233

3517.

Tausch, Michael W.
Didaktisch integrativer Chemieunterricht - Kohärente Inhalte, Methoden und Medien
Praxis der Naturwissenschaften - Chemie in der Schule, 65 (5) :44
2016

3516.

Ehrhardt, Matthias
Discrete artificial boundary conditions for the linearized Korteweg-de Vries equation
Numerical Methods for Partial Differential Equations, 32 (5) :1455--1484
2016

3515.

Ehrhardt, Matthias
Discrete artificial boundary conditions for the linearized Korteweg-de Vries equation
Numerical Methods for Partial Differential Equations, 32 (5) :1455–1484
2016
Herausgeber: John Wiley & Sons

3514.

Ehrhardt, Matthias
Discrete artificial boundary conditions for the linearized Korteweg-de Vries equation
Numerical Methods for Partial Differential Equations, 32 (5) :1455–1484
2016
Herausgeber: John Wiley & Sons

3513.

Kleffmann, Jörg
Discussion on ''Field study of air purification paving elements containing TiO\(_{2}\)'' by Folli et al. (2015)
2016

3512.

Kleffmann, Jörg
Discussion on ''Field study of air purification paving elements containing TiO\(_{2}\)'' by Folli et al. (2015)
2016

3511.

Kleffmann, Jörg
Discussion on "Field study of air purification paving elements containing TiO2" by Folli et al. (2015)
2016

3510.

Wandelt, Michèle; Günther, Michael
Efficient numerical simulation of the Wilson Flow in lattice QCD
In Russo, Giovanni and Capasso, Vincenzo and Nicosia, Giuseppe and Romano, Vittorio, Editor, Progress in Industrial Mathematics at ECMI 2014ausMathematics in Industry, Seite 1065–1071
In Russo, Giovanni and Capasso, Vincenzo and Nicosia, Giuseppe and Romano, Vittorio, Editor
Herausgeber: Springer Cham
2016

3509.

Wandelt, Michèle; Günther, Michael
Efficient Numerical Simulation of the Wilson Flow in Lattice QCD
Progress in Industrial Mathematics at ECMI 2014 18, Seite 1065--1071
Springer International Publishing
2016

3508.

Wandelt, Michèle; Günther, Michael
Efficient numerical simulation of the Wilson Flow in lattice QCD
In Russo, Giovanni and Capasso, Vincenzo and Nicosia, Giuseppe and Romano, Vittorio, Editor, Progress in Industrial Mathematics at ECMI 2014ausMathematics in Industry, Seite 1065–1071
In Russo, Giovanni and Capasso, Vincenzo and Nicosia, Giuseppe and Romano, Vittorio, Editor
Herausgeber: Springer Cham
2016

3507.

Gonska, Heiner; Heilmann, Margareta; Raşa, Ioan
Eigenstructure of the genuine Beta operators of Lupaş and Mühlbach
Stud. Univ. Babes-Bolyai Math., 61 (3) :383-388
2016

3506.

Tausch, Michael W.; N. Rend{{\'o}}n-Enríquez, Ibeth; Scherf, Ullrich
Elektrochrome Fenster - Impulse für Jugend Forscht \& Co.
Praxis der Naturwissenschaften - Chemie in der Schule, 65 (8) :34
2016

3505.

N. Rend{{\'o}}n-Enríquez, Ibeth; Tausch, Michael W.; Scherf, Ullrich
Elektrochrome Fenster mit leitenden Polymeren
Chemie in unserer Zeit, 50 (6) :400--405
2016
Herausgeber: Wiley

3504.

Kurtenbach, Ralf; Vaupel, Kai; Kleffmann, Jörg; Klenk, Ulrich; Schmidt, Eberhard; Wiesen, Peter
Emissions of NO, NO\(_{2}\) and PM from inland shipping
Atmospheric Chemistry and Physics, 16 (22) :14285-14295
2016

3503.

Kurtenbach, Ralf; Vaupel, Kai; Kleffmann, Jörg; Klenk, Ulrich; Schmidt, Eberhard; Wiesen, Peter
Emissions of NO, NO\(_{2}\) and PM from inland shipping
Atmospheric Chemistry and Physics, 16 (22) :14285-14295
2016

3502.

Kurtenbach, Ralf; Vaupel, Kai; Kleffmann, Jörg; Klenk, Ulrich; Schmidt, Eberhard; Wiesen, Peter
Emissions of NO, NO2 and PM from inland shipping
Atmospheric Chemistry and Physics, 16 (22) :14285-14295
2016

3501.

Boufekran, Hajar
Enzymatische Delignifizierung vom Holz
2016

3500.

Frommer, Andreas; Schweitzer, Marcel
Error bounds and estimates for Krylov subspace approximations of Stieltjes matrix functions
BIT, 56 (3) :865-892
2016

3499.

Frommer, Andreas; Schweitzer, Marcel
Error bounds and estimates for Krylov subspace approximations of Stieltjes matrix functions
BIT, 56 (3) :865-892
2016

3498.

Frommer, Andreas; Schweitzer, Marcel
Error bounds and estimates for Krylov subspace approximations of Stieltjes matrix functions
BIT, 56 (3) :865-892
2016

3497.

Daners, Daniel; Glück, Jochen; Kennedy, James B.
Eventually and asymptotically positive semigroups on Banach lattices
J. Differential Equations, 261 (5) :2607--2649
2016

3496.

Daners, Daniel; Glück, Jochen; Kennedy, James B.
Eventually positive semigroups of linear operators
J. Math. Anal. Appl., 433 (2) :1561--1593
2016