Applied and Computational Mathematics (ACM)

Artificial Boundary Conditions

When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).

We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.

Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.

Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.

Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.

Software

Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.

Publications



2018

3870.

Hachtel, Christoph; Kerler-Back, Johanna; Bartel, Andreas; Günther, Michael; Stykel, Tatjana
Multirate DAE/ODE-simulation and model order reduction for coupled field-circuit systems
In Langer, Ulrich and Amrhein, Wolfgang and Zulehner, Walter, Editor, Scientific Computing in Electrical Engineering: SCEE 2016, St. Wolfgang, Austria, October 2016ausMathematics in Industry, Seite 91–100
In Langer, Ulrich and Amrhein, Wolfgang and Zulehner, Walter, Editor
Herausgeber: Springer Cham
2018

3869.

Hachtel, Christoph; Kerler-Back, Johanna; Bartel, Andreas; Günther, Michael; Stykel, Tatjana
Multirate DAE/ODE-simulation and model order reduction for coupled field-circuit systems
In Langer, Ulrich and Amrhein, Wolfgang and Zulehner, Walter, Editor, Scientific Computing in Electrical Engineering: SCEE 2016, St. Wolfgang, Austria, October 2016ausMathematics in Industry, Seite 91–100
In Langer, Ulrich and Amrhein, Wolfgang and Zulehner, Walter, Editor
Herausgeber: Springer Cham
2018

3868.

Putek, Piotr; Janssen, Rick; Niehof, Jan; Maten, E. Jan W.; Pulch, Roland; Tasi{\'{c}}, Bratislav; Günther, Michael
Nanoelectronic {COupled} Problems Solutions: uncertainty quantification for analysis and optimization of an {RFIC} interference problem
JMI, 8 (1) :1-22
2018

3867.

Putek, Piotr; Janssen, Rick; Niehof, Jan; Maten, E Jan W; Pulch, Roland; Tasi{\'c}, Bratislav; Günther, Michael
Nanoelectronic COupled Problems Solutions: uncertainty quantification for analysis and optimization of an RFIC interference problem
Journal of Mathematics in Industry, 8 :1--19
2018
Herausgeber: Springer Berlin Heidelberg

3866.

Putek, Piotr; Janssen, Rick; Niehof, Jan; Maten, E. Jan W.; Pulch, Roland; Tasic, Bratislav; Günther, Michael
Nanoelectronic COupled problems solutions: Uncertainty quantification for analysis and optimization of an RFIC interference problem
Journal of Mathematics in Industry, 8 (1) :1–19
2018
Herausgeber: Springer Verlag

3865.

Putek, Piotr; Janssen, Rick; Niehof, Jan; Maten, E. Jan W.; Pulch, Roland; Tasic, Bratislav; Günther, Michael
Nanoelectronic COupled problems solutions: Uncertainty quantification for analysis and optimization of an RFIC interference problem
Journal of Mathematics in Industry, 8 (1) :1–19
2018
Herausgeber: Springer Verlag

3864.

Putek, P.; Janssen, R.; Niehof, J.; Maten, E. J. W.; Pulch, R.; Tasic, B.; Günther, M.
Nanoelectronic Coupled Problems Solutions: Uncertainty quantification of {RFIC} interference
In Quintela, P. and Barral, P. and Gómez, D. and Pena, F.J. and Rodríguez, J. and Salgado, P. and Vázquez-Mendéz, M.E., Editor, Progress in Industrial Mathematics at ECMI 2016 Band 26 aus Mathematics in Industry
Seite 271--279
Herausgeber: Springer
2018
271--279

3863.

Putek, Piotr; Janssen, Rick; Niehof, Jan; Maten, E. Jan W.; Pulch, Roland; Tasic, Bratislav; Günther, Michael
Nanoelectronic coupled problems solutions: Uncertainty quantification of RFIC interference
In Quintela, Peregrina and Barral, Patricia and Gómez, Dolores and Pena, Francisco J. and Rodríguez, Jerónimo and Salgado, Pilar and Vázquez-Mendéz, Miguel E., Editor, Progress in Industrial Mathematics at ECMI 2016ausMathematics in Industry, Seite 271–279
In Quintela, Peregrina and Barral, Patricia and Gómez, Dolores and Pena, Francisco J. and Rodríguez, Jerónimo and Salgado, Pilar and Vázquez-Mendéz, Miguel E., Editor
Herausgeber: Springer Cham
2018

3862.

Putek, Piotr; Janssen, Rick; Niehof, Jan; Maten, E. Jan W.; Pulch, Roland; Tasic, Bratislav; Günther, Michael
Nanoelectronic coupled problems solutions: Uncertainty quantification of RFIC interference
In Quintela, Peregrina and Barral, Patricia and Gómez, Dolores and Pena, Francisco J. and Rodríguez, Jerónimo and Salgado, Pilar and Vázquez-Mendéz, Miguel E., Editor, Progress in Industrial Mathematics at ECMI 2016ausMathematics in Industry, Seite 271–279
In Quintela, Peregrina and Barral, Patricia and Gómez, Dolores and Pena, Francisco J. and Rodríguez, Jerónimo and Salgado, Pilar and Vázquez-Mendéz, Miguel E., Editor
Herausgeber: Springer Cham
2018

3861.

Frommer, Andreas; Schimmel, Claudia; Schweitzer, Marcel
Non-Toeplitz decay bounds for inverses of Hermitian positive definite tridiagonal matrices
Electron. Trans. Numer. Anal., 48 :362-372
2018

3860.

Frommer, Andreas; Schimmel, Claudia; Schweitzer, Marcel
Non-Toeplitz decay bounds for inverses of Hermitian positive definite tridiagonal matrices
Electron. Trans. Numer. Anal., 48 :362-372
2018

3859.

Frommer, Andreas; Schimmel, Claudia; Schweitzer, Marcel
Non-Toeplitz decay bounds for inverses of Hermitian positive definite tridiagonal matrices
Electron. Trans. Numer. Anal., 48 :362-372
2018

3858.

Gabbana, A.; Mendoza, M.; Succi, S.; Tripiccione, R.
Numerical evidence of electron hydrodynamic whirlpools in graphene samples
Computers & Fluids, 172 :644–650
2018
Herausgeber: Elsevier

3857.

Petrov, P.; Tyshchenko, A. G.; Ehrhardt, M.
Numerical solution of iterative parabolic equations approximating the nonlinear {Helmholtz} equation
Proceedings of the International Conference DAYS on DIFFRACTION 2018, St.Petersburg, Russia
2018

3856.

Ehrhardt, Matthias
Numerical solution of iterative parabolic equations approximating the nonlinear Helmholtz equation
2018 Days on Diffraction (DD), Seite 241–244
IEEE
Herausgeber: IEEE
2018

3855.

Ehrhardt, Matthias
Numerical solution of iterative parabolic equations approximating the nonlinear Helmholtz equation
2018 Days on Diffraction (DD), Seite 241--244
IEEE
2018

3854.

Ehrhardt, Matthias
Numerical solution of iterative parabolic equations approximating the nonlinear Helmholtz equation
2018 Days on Diffraction (DD), Seite 241–244
IEEE
Herausgeber: IEEE
2018

3853.

Ramadan, Leila
Offline-Pyrolyse GCxGC von Kunstoffpolymeren zur Analytik von Mikroplastik
2018

3852.

Ankirchner, Stefan; Klein, Maike; Kruse, Thomas; Urusov, Mikhail
On a certain local martingale in a general diffusion setting
2018

3851.

Bartel, Andreas; G\"unther, Michael
PDAEs in refined electrical network modeling
SIAM Review, 60 (1) :56--91
2018
Herausgeber: Society for Industrial and Applied Mathematics

3850.

Bartel, Andreas; Günther, Michael
PDAEs in refined electrical network modeling
SIAM Review, 60 (1) :56--91
Januar 2018
Herausgeber: Society for Industrial and Applied Mathematics

3849.

Bartel, Andreas; Günther, Michael
PDAEs in refined electrical network modeling
SIAM Review, 60 (1) :56–91
2018
Herausgeber: Society for Industrial and Applied Mathematics

3848.

Bartel, Andreas; Günther, Michael
PDAEs in refined electrical network modeling
SIAM Review, 60 (1) :56–91
2018
Herausgeber: Society for Industrial and Applied Mathematics

3847.

B{\'a}tkai, Andr{\'a}s; Jacob, Birgit; Voigt, Jürgen; Wintermayr, Jens
Perturbations of positive semigroups on {AM}-spaces
Semigroup Forum, 96 (2) :333--347
2018

3846.

Bátkai, András; Jacob, Birgit; Voigt, Jürgen; Wintermayr, Jens
Perturbations of positive semigroups on AM-spaces
Semigroup Forum, 96 (2) :333--347
2018