Artificial Boundary Conditions
When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).
We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.
Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.
Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.
Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.
Software
Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.
Publications
- 2019
4067.
Rivela, Cynthia B.; Tovar, Carmen M.; Gibilisco, Rodrigo G.; Teruel, Mariano A.; Barnes, Ian; Wiesen, Peter; Blanco, Mar{í}a B.
Product distribution and mechanism of the OH\(^{-}\) initiated tropospheric degradation of three CFC replacement candidates: CH\(_{3}\)CF=CH\(_{2}\), (CF\(_{3}\))\(_{2}\)C=CH\(_{2}\) and (E/Z)-CF\(_{3}\)CF=CHF
RSC Advances, 9 (10) :5592-5598
20194066.
Rivela, Cynthia B.; Tovar, Carmen M.; Gibilisco, Rodrigo G.; Teruel, Mariano A.; Barnes, Ian; Wiesen, Peter; Blanco, María B.
Product distribution and mechanism of the OH- initiated tropospheric degradation of three CFC replacement candidates: CH3CF=CH2, (CF3)2C=CH2 and (E/Z)-CF3CF=CHF
RSC Advances, 9 (10) :5592-5598
20194065.
QUANTUM NETWORKS WITH REFLECTIONLESS BRANCHING POINTS
BUKHARA--SAMARKAND--TASHKENT, 16 :142
20194064.
Gabbana, A.; Simeoni, D.; Succi, S.; Tripiccione, R.
Relativistic dissipation obeys Chapman-Enskog asymptotics: Analytical and numerical evidence as a basis for accurate kinetic simulations
Physical Review E, 99 :052126
2019
Herausgeber: American Physical Society4063.
Hirano, Tsuneo; Nagashima, Umpei; Jensen, Per; Li, Hui
Ro-vibrationally averaged dipole moments of linear triatomic molecules
Journal of Molecular Spectroscopy, 362 :29-36
2019
Herausgeber: Academic Press4062.
Hirano, Tsuneo; Nagashima, Umpei; Jensen, Per; Li, Hui
Ro-vibrationally averaged dipole moments of linear triatomic molecules
Journal of Molecular Spectroscopy, 362 :29-36
2019
Herausgeber: Academic Press4061.
Hirano, Tsuneo; Nagashima, Umpei; Jensen, Per; Li, Hui
Ro-vibrationally averaged dipole moments of linear triatomic molecules
Journal of Molecular Spectroscopy, 362 :29-36
2019
Herausgeber: Academic Press4060.
Putek, Piotr; Maten, E Jan W; Günther, Michael; Bartel, Andreas; Pulch, Roland; Meuris, Peter; Schoenmaker, Wim
Robust Shape Optimization under Uncertainties in Device Materials, Geometry and Boundary Conditions
Nanoelectronic Coupled Problems Solutions :223--260
2019
Herausgeber: Springer International Publishing4059.
Putek, Piotr; Maten, E. Jan W.; Günther, Michael; Bartel, Andreas; Pulch, Roland; Meuris, Peter; Schoenmaker, Wim
Robust shape optimization under uncertainties in device materials, geometry and boundary conditions
In ter Maten, E. Jan W. and Brachtendorf, Hans-Georg and Pulch, Roland and Schoenmaker, Wim and De Gersem, Herbert, Editor aus Mathematics in Industry
Seite 223–260
Herausgeber: Springer Cham
2019
223–2604058.
Putek, Piotr; Maten, E. Jan W.; Günther, Michael; Bartel, Andreas; Pulch, Roland; Meuris, Peter; Schoenmaker, Wim
Robust shape optimization under uncertainties in device materials, geometry and boundary conditions
In ter Maten, E. Jan W. and Brachtendorf, Hans-Georg and Pulch, Roland and Schoenmaker, Wim and De Gersem, Herbert, Editor aus Mathematics in Industry
Seite 223–260
Herausgeber: Springer Cham
2019
223–2604057.
Günther, Michael; Brendel, Andreas; Kellermann, Walter
Single-channel signal features for estimating microphone utility for coherent signal processing
20194056.
Ehrhardt, Matthias; Gašper, Ján; Kilianová, Sona
SIR-based mathematical modeling of infectious diseases with vaccination and waning immunity
Journal of Computational Science, 37 :101027
2019
Herausgeber: Elsevier4055.
Ehrhardt, Matthias; Gašper, Ján; Kilianová, Sona
SIR-based mathematical modeling of infectious diseases with vaccination and waning immunity
Journal of Computational Science, 37 :101027
2019
Herausgeber: Elsevier4054.
Ehrhardt, Matthias; Gašper, Ján; Kilianová, Sona
SIR-based mathematical modeling of infectious diseases with vaccination and waning immunity
Journal of Computational Science, 37 :101027
2019
Herausgeber: Elsevier4053.
Zeller, Diana; Bohrmann-Linde, Claudia
Solar Cells with Titanium Dioxide
2019
Wuppertal4052.
Zeller, Diana; Bohrmann-Linde, Claudia
Solarzellen mit Titandioxid [Lehrerband]
2019
Wuppertal4051.
Zeller, Diana; Bohrmann-Linde, Claudia
Solarzellen mit Titandioxid [Schülerband]
2019
Wuppertal4050.
[german] Zeller, Diana; Bohrmann-Linde, Claudia
Sommer, Sonne, Titandioxid
Nachrichten aus der Chemie, 67 (7-8) :16-19
20194049.
Ankirchner, Stefan; Kazi-Tani, Nabil; Klein, Maike; Kruse, Thomas
Stopping with expectation constraints: 3 points suffice
Electronic Journal of Probability, 24 :1--16
2019
Herausgeber: Institute of Mathematical Statistics and Bernoulli Society4048.
Ankirchner, Stefan; Kazi-Tani, Nabil; Klein, Maike; Kruse, Thomas
Stopping with expectation constraints: 3 points suffice
Electronic Journal of Probability, 24 :1–16
2019
Herausgeber: Institute of Mathematical Statistics and Bernoulli Society4047.
Hagen, Ferdinand H. Farwick; Mathissen, Marcel; Grabiec, Tomasz; Hennicke, Tim; Rettig, Marc; Grochowicz, Jaroslaw; Vogt, Rainer; Benter, Thorsten
Study of Brake Wear Particle Emissions: Impact of Braking and Cruising Conditions
Environmental Science \& Technology, 53 (9) :5143-5150
20194046.
zum Hagen, Ferdinand H. Farwick; Mathissen, Marcel; Grabiec, Tomasz; Hennicke, Tim; Rettig, Marc; Grochowicz, Jaroslaw; Vogt, Rainer; Benter, Thorsten
Study of Brake Wear Particle Emissions: Impact of Braking and Cruising Conditions
Environmental Science & Technology, 53 (9) :5143-5150
20194045.
Hagen, Ferdinand H. Farwick; Mathissen, Marcel; Grabiec, Tomasz; Hennicke, Tim; Rettig, Marc; Grochowicz, Jaroslaw; Vogt, Rainer; Benter, Thorsten
Study of Brake Wear Particle Emissions: Impact of Braking and Cruising Conditions
Environmental Science \& Technology, 53 (9) :5143-5150
20194044.
Ottenbruch, Moritz; Mohr, Fabian
Synthesis of Sulfonylisoureas via Sulfo-Click Reactions
Synthesis, 52 (5) :695–702
2019
ISSN: 0039-7881, 1437-210X4043.
Wissdorf, Walter; Lorenz, Matthias; Brockmann, Klaus Josef; Benter, Thorsten
Systematic Ion Source Parameter Assessment by Automated Determination of the Distribution of Ion Acceptance (DIA) Using APLI
Journal of The American Society for Mass Spectrometry, 30 (7) :1262-1275
2019
Herausgeber: Journal of The American Society for Mass Spectrometry