Applied and Computational Mathematics (ACM)

Artificial Boundary Conditions

When computing numerically the solution of a partial differential equation in an unbounded domain usually artificial boundaries are introduced to limit the computational domain. Special boundary conditions are derived at this artificial boundaries to approximate the exact whole-space solution. If the solution of the problem on the bounded domain is equal to the whole-space solution (restricted to the computational domain) these boundary conditions are called transparent boundary conditions (TBCs).

We are concerned with TBCs for general Schrödinger-type pseudo-differential equations arising from `parabolic' equation (PE) models which have been widely used for one-way wave propagation problems in various application areas, e.g. (underwater) acoustics, seismology, optics and plasma physics. As a special case the Schrödinger equation of quantum mechanics is included.

Existing discretizations of these TBCs induce numerical reflections at this artificial boundary and also may destroy the stability of the used finite difference method. These problems do not occur when using a so-called discrete TBC which is derived from the fully discretized whole-space problem. This discrete TBC is reflection-free and conserves the stability properties of the whole-space scheme. We point out that the superiority of discrete TBCs over other discretizations of TBCs is not restricted to the presented special types of partial differential equations or to our particular interior discretization scheme.

Another problem is the high numerical effort. Since the discrete TBC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for long-time simulations. As a remedy we construct new approximative TBCs involving exponential sums as an approximation to the convolution kernel. This special approximation enables us to use a fast evaluation of the convolution type boundary condition.

Finally, to illustrate the broad range of applicability of our approach we derived efficient discrete artificial boundary conditions for the Black-Scholes equation of American options.

Software

Our approach was implemented by C.A. Moyer in the QMTools software package for quantum mechanical applications.

Publications



2020

4291.

Doganay, Onur Tanil; Gottschalk, Hanno; Hahn, Camilla; Klamroth, Kathrin; Schultes, Johanna; Stiglmayr, Michael
Gradient based biobjective shape optimization to improve reliability and cost of ceramic components
Optimization and Engineering, 21 (4) :1359-1387
2020

4290.

Xue, Chaoyang; Zhang, Chenglong; Ye, Can; Liu, Pengfei; Catoire, Valéry; Krysztofiak, Gisèle; Chen, Hui; Ren, Yangang; Zhao, Xiaoxi; Wang, Jinhe; Zhang, Fei; Zhang, Chongxu; Zhang, Jingwei; An, Junling; Wang, Tao; Chen, Jianmin; Kleffmann, Jörg; Mellouki, Abdelwahid; Mu, Yujing
HONO Budget and Its Role in Nitrate Formation in the Rural North China Plain
Environmental Science \& Technology, 54 (18) :11048--11057
September 2020
ISSN: 0013-936X, 1520-5851

4289.

Kutzner, Laura; Goloshchapova, Kateryna; Rund, Katharina M.; Jübermann, Martin; Blum, Maximilian; Rothe, Michael; Schunck, Wolf-Hagen; Kühn, Hartmut; Schebb, Nils Helge
Human lipoxygenase isoforms form complex patterns of double and triple oxygenated compounds from eicosapentaenoic acid
Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1865 (12) :158806
2020
ISSN: 1388-1981

4288.

Burger, Martin; Pinnau, Rene; Totzeck, Claudia; Tse, Oliver; Roth, Andreas
Instantaneous control of interacting particle systems in the mean-field limit
Journal of Computational Physics, 405 :109181
2020

4287.

Bartel, Andreas; Günther, Michael
Inter/extrapolation-based multirate schemes -- a dynamic-iteration perspective
In Reis, Timo and Grundel, Sara and Schöps, Sebastian, Editor
Seite 73--90
Herausgeber: Springer
2020
73--90

4286.

Bartel, Andreas; Günther, Michael
Inter/extrapolation-based multirate schemes: a dynamic-iteration perspective
Progress in differential-algebraic equations II, Seite 73--90
Springer International Publishing
2020

4285.

Bartel, Andreas; Günther, Michael
Inter/extrapolation-based multirate schemes: A dynamic-iteration perspective
In Reis, Timo and Grundel, Sara and Schöps, Sebastian, Editor, Progress in Differential-Algebraic Equations IIausDifferential-Algebraic Equations Forum, Seite 73–90
In Reis, Timo and Grundel, Sara and Schöps, Sebastian, Editor
Herausgeber: Springer Cham
2020

4284.

Bartel, Andreas; Günther, Michael
Inter/extrapolation-based multirate schemes: A dynamic-iteration perspective
In Reis, Timo and Grundel, Sara and Schöps, Sebastian, Editor, Progress in Differential-Algebraic Equations IIausDifferential-Algebraic Equations Forum, Seite 73–90
In Reis, Timo and Grundel, Sara and Schöps, Sebastian, Editor
Herausgeber: Springer Cham
2020

4283.

Dietz, Tobias; Klamroth, Kathrin; Kraus, Konstantin; Ruzika, Stefan; Schäfer, Luca E.; Schulze, Britta; Stiglmayr, Michael; Wiecek, Margaret M.
Introducing Multiobjective Complex Systems
European Journal of Operational Research, 280 (2) :581--596
2020
Herausgeber: Elsevier

4282.

Kaltenbäck, Michael; Skrepek, Nathanael
Joint functional calculus for definitizable self-adjoint operators on {K}rein spaces
Integral Equations Operator Theory, 92 (4) :Paper No. 29, 36
2020

4281.

Kaltenbäck, Michael; Skrepek, Nathanael
Joint functional calculus for definitizable self-adjoint operators on Krein spaces
Integral Equations Operator Theory, 92 (4) :Paper No. 29, 36
2020

4280.

Frommer, Andreas; Jacob, Birgit; Kahl, Karsten; Wyss, Christian; Zwaan, Ian
Krylov type methods exploiting the quadratic numerical range
Electron. Trans. Numer. Anal., 53 :541-561
2020

4279.

Stiglmayr, Michael
Layout problems with reachability constraint
In J. S. Neufeld and U. Buscher and R. Lasch and D. Möst and J. Schönberger , Editor, Operations Research Proceedings 2019
Operations Research 2019
Dresden
In J. S. Neufeld and U. Buscher and R. Lasch and D. Möst and J. Schönberger , Editor
Herausgeber: Springer, Cham
2020

4278.

Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Linking Baskakov type operators
CONSTRUCTIVE THEORY OF FUNCTIONS, Sozopol 2019, Seite 23-38
Herausgeber: Prof. Marin Drinov Academic Publishing House
2020

4277.

[german] Zeller, Diana; Bohrmann-Linde, Claudia
Mit Früchten zum elektrischen Strom! - Dynamische eBooks am Beispiel des Konzepts ''Alternative Solarzellen mit Titandioxid''
Digital Unterrichten Biologie, 3 :10-11
2020

4276.

Bartel, Andreas; Ehrhardt, Matthias
Modulation of Rayleigh-Benard Convection by Lagrangian Thermal Forcing
APS Division of Fluid Dynamics Meeting Abstracts, Seite T01--008
2020

4275.

Ferrari, P.; Serra-Capizzano, S.
Multigrid for $\mathbb{Q}_{k}$ Finite Element Matrices using a (block) Toeplitz symbol approach
Mathematics, 8 (1) :Paper No. 5
2020

4274.

Ferrari, P.; Serra-Capizzano, S.
Multigrid for $\mathbb{Q}_{k}$ Finite Element Matrices using a (block) Toeplitz symbol approach
Mathematics, 8 (1) :Paper No. 5
2020

4273.

Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas; Nguyen, Tuan Anh
Multilevel Picard approximations for high-dimensional semilinear second-order PDEs with Lipschitz nonlinearities
arXiv preprint arXiv:2009.02484
2020

4272.

Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas; Nguyen, Tuan Anh
Multilevel Picard approximations for high-dimensional semilinear second-order PDEs with Lipschitz nonlinearities
Preprint
2020

4271.

Hutzenthaler, Martin; Kruse, Thomas
Multilevel Picard Approximations of High-Dimensional Semilinear Parabolic Differential Equations with Gradient-Dependent Nonlinearities
SIAM Journal on Numerical Analysis, 58 (2) :929--961
2020
Herausgeber: SIAM

4270.

Hutzenthaler, Martin; Kruse, Thomas
Multilevel Picard approximations of high-dimensional semilinear parabolic differential equations with gradient-dependent nonlinearities
SIAM Journal on Numerical Analysis, 58 (2) :929–961
2020
Herausgeber: Society for Industrial and Applied Mathematics

4269.

Kawai, M.; Ida, A.; Matsuba, H.; Nakajima, K.; Bolten, Matthias
Multiplicative Schwartz-Type Block Multi-Color Gauss-Seidel Smoother for Algebraic Multigrid Methods
Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region, Seite 217-226
Herausgeber: ACM, New York
2020

4268.

Kawai, M.; Ida, A.; Matsuba, H.; Nakajima, K.; Bolten, M.
Multiplicative Schwartz-Type Block Multi-Color Gauss-Seidel Smoother for Algebraic Multigrid Methods
Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region, Seite 217-226
Herausgeber: ACM, New York
2020

4267.

Klamroth, Kathrin; Lang, Bruno; Seyfried, Armin; Stiglmayr, Michael
Network Simulation for Pedestrian Flows with HyDEFS
Collective Dynamics, 5 :1-16
2020